matrix/mat64: use pools for []float64 and []int where possible

This commit is contained in:
kortschak
2017-06-07 10:52:32 +09:30
committed by Dan Kortschak
parent d49f26e4f8
commit 8ca1ab32d2
11 changed files with 164 additions and 63 deletions

View File

@@ -39,7 +39,8 @@ type Cholesky struct {
// the norm is estimated from the decomposition. // the norm is estimated from the decomposition.
func (c *Cholesky) updateCond(norm float64) { func (c *Cholesky) updateCond(norm float64) {
n := c.chol.mat.N n := c.chol.mat.N
work := make([]float64, 3*n) work := getFloats(3*n, false)
defer putFloats(work)
if norm < 0 { if norm < 0 {
// This is an approximation. By the definition of a norm, ||AB|| <= ||A|| ||B||. // This is an approximation. By the definition of a norm, ||AB|| <= ||A|| ||B||.
// Here, A = U^T * U. // Here, A = U^T * U.
@@ -52,8 +53,9 @@ func (c *Cholesky) updateCond(norm float64) {
norm = unorm * lnorm norm = unorm * lnorm
} }
sym := c.chol.asSymBlas() sym := c.chol.asSymBlas()
iwork := make([]int, n) iwork := getInts(n, false)
v := lapack64.Pocon(sym, norm, work, iwork) v := lapack64.Pocon(sym, norm, work, iwork)
putInts(iwork)
c.cond = 1 / v c.cond = 1 / v
} }
@@ -70,8 +72,9 @@ func (c *Cholesky) Factorize(a Symmetric) (ok bool) {
copySymIntoTriangle(c.chol, a) copySymIntoTriangle(c.chol, a)
sym := c.chol.asSymBlas() sym := c.chol.asSymBlas()
work := make([]float64, c.chol.mat.N) work := getFloats(c.chol.mat.N, false)
norm := lapack64.Lansy(matrix.CondNorm, sym, work) norm := lapack64.Lansy(matrix.CondNorm, sym, work)
putFloats(work)
_, ok = lapack64.Potrf(sym) _, ok = lapack64.Potrf(sym)
if ok { if ok {
c.updateCond(norm) c.updateCond(norm)
@@ -345,7 +348,8 @@ func (c *Cholesky) SymRankOne(orig *Cholesky, alpha float64, x *Vector) (ok bool
// EPFL Technical Report 161468 (2004) // EPFL Technical Report 161468 (2004)
// http://infoscience.epfl.ch/record/161468 // http://infoscience.epfl.ch/record/161468
work := make([]float64, n) work := getFloats(n, false)
defer putFloats(work)
blas64.Copy(n, x.RawVector(), blas64.Vector{1, work}) blas64.Copy(n, x.RawVector(), blas64.Vector{1, work})
if alpha > 0 { if alpha > 0 {
@@ -404,8 +408,10 @@ func (c *Cholesky) SymRankOne(orig *Cholesky, alpha float64, x *Vector) (ok bool
return false return false
} }
norm = math.Sqrt((1 + norm) * (1 - norm)) norm = math.Sqrt((1 + norm) * (1 - norm))
cos := make([]float64, n) cos := getFloats(n, false)
sin := make([]float64, n) defer putFloats(cos)
sin := getFloats(n, false)
defer putFloats(sin)
for i := n - 1; i >= 0; i-- { for i := n - 1; i >= 0; i-- {
// Compute parameters of Givens matrices that zero elements of p // Compute parameters of Givens matrices that zero elements of p
// backwards. // backwards.

View File

@@ -230,18 +230,22 @@ func (m *Dense) Inverse(a Matrix) error {
default: default:
m.Copy(a) m.Copy(a)
} }
ipiv := make([]int, r) ipiv := getInts(r, false)
defer putInts(ipiv)
ok := lapack64.Getrf(m.mat, ipiv) ok := lapack64.Getrf(m.mat, ipiv)
if !ok { if !ok {
return matrix.Condition(math.Inf(1)) return matrix.Condition(math.Inf(1))
} }
work := make([]float64, 1, 4*r) // must be at least 4*r for cond. work := getFloats(4*r, false) // must be at least 4*r for cond.
lapack64.Getri(m.mat, ipiv, work, -1) lapack64.Getri(m.mat, ipiv, work, -1)
if int(work[0]) > 4*r { if int(work[0]) > 4*r {
work = make([]float64, int(work[0])) l := int(work[0])
putFloats(work)
work = getFloats(l, false)
} else { } else {
work = work[:4*r] work = work[:4*r]
} }
defer putFloats(work)
lapack64.Getri(m.mat, ipiv, work, len(work)) lapack64.Getri(m.mat, ipiv, work, len(work))
norm := lapack64.Lange(matrix.CondNorm, m.mat, work) norm := lapack64.Lange(matrix.CondNorm, m.mat, work)
rcond := lapack64.Gecon(matrix.CondNorm, m.mat, norm, work, ipiv) // reuse ipiv rcond := lapack64.Gecon(matrix.CondNorm, m.mat, norm, work, ipiv) // reuse ipiv
@@ -426,7 +430,8 @@ func (m *Dense) Mul(a, b Matrix) {
} }
} }
row := make([]float64, ac) row := getFloats(ac, false)
defer putFloats(row)
for r := 0; r < ar; r++ { for r := 0; r < ar; r++ {
for i := range row { for i := range row {
row[i] = a.At(r, i) row[i] = a.At(r, i)

View File

@@ -44,11 +44,12 @@ func (e *EigenSym) Factorize(a Symmetric, vectors bool) (ok bool) {
jobz = lapack.ComputeEV jobz = lapack.ComputeEV
} }
w := make([]float64, n) w := make([]float64, n)
work := make([]float64, 1) work := []float64{0}
lapack64.Syev(jobz, sd.mat, w, work, -1) lapack64.Syev(jobz, sd.mat, w, work, -1)
work = make([]float64, int(work[0])) work = getFloats(int(work[0]), false)
ok = lapack64.Syev(jobz, sd.mat, w, work, len(work)) ok = lapack64.Syev(jobz, sd.mat, w, work, len(work))
putFloats(work)
if !ok { if !ok {
e.vectorsComputed = false e.vectorsComputed = false
e.values = nil e.values = nil
@@ -165,13 +166,16 @@ func (e *Eigen) Factorize(a Matrix, left, right bool) (ok bool) {
jobvr = lapack.ComputeRightEV jobvr = lapack.ComputeRightEV
} }
wr := make([]float64, c) wr := getFloats(c, false)
wi := make([]float64, c) defer putFloats(wr)
wi := getFloats(c, false)
defer putFloats(wi)
work := make([]float64, 1) work := []float64{0}
lapack64.Geev(jobvl, jobvr, sd.mat, wr, wi, vl.mat, vr.mat, work, -1) lapack64.Geev(jobvl, jobvr, sd.mat, wr, wi, vl.mat, vr.mat, work, -1)
work = make([]float64, int(work[0])) work = getFloats(int(work[0]), false)
first := lapack64.Geev(jobvl, jobvr, sd.mat, wr, wi, vl.mat, vr.mat, work, len(work)) first := lapack64.Geev(jobvl, jobvr, sd.mat, wr, wi, vl.mat, vr.mat, work, len(work))
putFloats(work)
if first != 0 { if first != 0 {
e.values = nil e.values = nil

View File

@@ -24,11 +24,13 @@ func (lq *LQ) updateCond() {
// A = LQ, where Q is orthonormal. Orthonormal multiplications do not change // A = LQ, where Q is orthonormal. Orthonormal multiplications do not change
// the condition number. Thus, ||A|| = ||L|| ||Q|| = ||Q||. // the condition number. Thus, ||A|| = ||L|| ||Q|| = ||Q||.
m := lq.lq.mat.Rows m := lq.lq.mat.Rows
work := make([]float64, 3*m) work := getFloats(3*m, false)
iwork := make([]int, m) iwork := getInts(m, false)
l := lq.lq.asTriDense(m, blas.NonUnit, blas.Lower) l := lq.lq.asTriDense(m, blas.NonUnit, blas.Lower)
v := lapack64.Trcon(matrix.CondNorm, l.mat, work, iwork) v := lapack64.Trcon(matrix.CondNorm, l.mat, work, iwork)
lq.cond = 1 / v lq.cond = 1 / v
putFloats(work)
putInts(iwork)
} }
// Factorize computes the LQ factorization of an m×n matrix a where n <= m. The LQ // Factorize computes the LQ factorization of an m×n matrix a where n <= m. The LQ
@@ -47,11 +49,12 @@ func (lq *LQ) Factorize(a Matrix) {
lq.lq = &Dense{} lq.lq = &Dense{}
} }
lq.lq.Clone(a) lq.lq.Clone(a)
work := make([]float64, 1) work := []float64{0}
lq.tau = make([]float64, k) lq.tau = make([]float64, k)
lapack64.Gelqf(lq.lq.mat, lq.tau, work, -1) lapack64.Gelqf(lq.lq.mat, lq.tau, work, -1)
work = make([]float64, int(work[0])) work = getFloats(int(work[0]), false)
lapack64.Gelqf(lq.lq.mat, lq.tau, work, len(work)) lapack64.Gelqf(lq.lq.mat, lq.tau, work, len(work))
putFloats(work)
lq.updateCond() lq.updateCond()
} }
@@ -110,10 +113,11 @@ func (lq *LQ) QTo(dst *Dense) *Dense {
} }
// Construct Q from the elementary reflectors. // Construct Q from the elementary reflectors.
work := make([]float64, 1) work := []float64{0}
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, -1) lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, -1)
work = make([]float64, int(work[0])) work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, len(work)) lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, len(work))
putFloats(work)
return dst return dst
} }
@@ -152,10 +156,11 @@ func (m *Dense) SolveLQ(lq *LQ, trans bool, b Matrix) error {
x.Copy(b) x.Copy(b)
t := lq.lq.asTriDense(lq.lq.mat.Rows, blas.NonUnit, blas.Lower).mat t := lq.lq.asTriDense(lq.lq.mat.Rows, blas.NonUnit, blas.Lower).mat
if trans { if trans {
work := make([]float64, 1) work := []float64{0}
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, x.mat, work, -1) lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, x.mat, work, -1)
work = make([]float64, int(work[0])) work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, x.mat, work, len(work)) lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, x.mat, work, len(work))
putFloats(work)
ok := lapack64.Trtrs(blas.Trans, t, x.mat) ok := lapack64.Trtrs(blas.Trans, t, x.mat)
if !ok { if !ok {
@@ -169,10 +174,11 @@ func (m *Dense) SolveLQ(lq *LQ, trans bool, b Matrix) error {
for i := r; i < c; i++ { for i := r; i < c; i++ {
zero(x.mat.Data[i*x.mat.Stride : i*x.mat.Stride+bc]) zero(x.mat.Data[i*x.mat.Stride : i*x.mat.Stride+bc])
} }
work := make([]float64, 1) work := []float64{0}
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, x.mat, work, -1) lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, x.mat, work, -1)
work = make([]float64, int(work[0])) work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, x.mat, work, len(work)) lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, x.mat, work, len(work))
putFloats(work)
} }
// M was set above to be the correct size for the result. // M was set above to be the correct size for the result.
m.Copy(x) m.Copy(x)

View File

@@ -27,8 +27,10 @@ type LU struct {
// norm of the original matrix. If norm is negative it will be estimated. // norm of the original matrix. If norm is negative it will be estimated.
func (lu *LU) updateCond(norm float64) { func (lu *LU) updateCond(norm float64) {
n := lu.lu.mat.Cols n := lu.lu.mat.Cols
work := make([]float64, 4*n) work := getFloats(4*n, false)
iwork := make([]int, n) defer putFloats(work)
iwork := getInts(n, false)
defer putInts(iwork)
if norm < 0 { if norm < 0 {
// This is an approximation. By the definition of a norm, ||AB|| <= ||A|| ||B||. // This is an approximation. By the definition of a norm, ||AB|| <= ||A|| ||B||.
// The condition number is ||A|| || A^-1||, so this will underestimate // The condition number is ||A|| || A^-1||, so this will underestimate
@@ -68,8 +70,9 @@ func (lu *LU) Factorize(a Matrix) {
lu.pivot = make([]int, r) lu.pivot = make([]int, r)
} }
lu.pivot = lu.pivot[:r] lu.pivot = lu.pivot[:r]
work := make([]float64, r) work := getFloats(r, false)
anorm := lapack64.Lange(matrix.CondNorm, lu.lu.mat, work) anorm := lapack64.Lange(matrix.CondNorm, lu.lu.mat, work)
putFloats(work)
lapack64.Getrf(lu.lu.mat, lu.pivot) lapack64.Getrf(lu.lu.mat, lu.pivot)
lu.updateCond(anorm) lu.updateCond(anorm)
} }
@@ -99,7 +102,8 @@ func (lu *LU) Det() float64 {
// division expressions is generally improved by working in log space. // division expressions is generally improved by working in log space.
func (lu *LU) LogDet() (det float64, sign float64) { func (lu *LU) LogDet() (det float64, sign float64) {
_, n := lu.lu.Dims() _, n := lu.lu.Dims()
logDiag := make([]float64, n) logDiag := getFloats(n, false)
defer putFloats(logDiag)
sign = 1.0 sign = 1.0
for i := 0; i < n; i++ { for i := 0; i < n; i++ {
v := lu.lu.at(i, i) v := lu.lu.at(i, i)
@@ -171,8 +175,10 @@ func (lu *LU) RankOne(orig *LU, alpha float64, x, y *Vector) {
lu.lu.Copy(orig.lu) lu.lu.Copy(orig.lu)
} }
xs := make([]float64, n) xs := getFloats(n, false)
ys := make([]float64, n) defer putFloats(xs)
ys := getFloats(n, false)
defer putFloats(ys)
for i := 0; i < n; i++ { for i := 0; i < n; i++ {
xs[i] = x.at(i) xs[i] = x.at(i)
ys[i] = y.at(i) ys[i] = y.at(i)

View File

@@ -292,48 +292,58 @@ func Cond(a Matrix, norm float64) float64 {
// Use the LU decomposition to compute the condition number. // Use the LU decomposition to compute the condition number.
tmp := getWorkspace(m, n, false) tmp := getWorkspace(m, n, false)
tmp.Copy(a) tmp.Copy(a)
work := make([]float64, 4*n) work := getFloats(4*n, false)
aNorm := lapack64.Lange(lnorm, tmp.mat, work) aNorm := lapack64.Lange(lnorm, tmp.mat, work)
pivot := make([]int, m) pivot := getInts(m, false)
lapack64.Getrf(tmp.mat, pivot) lapack64.Getrf(tmp.mat, pivot)
iwork := make([]int, n) iwork := make([]int, n)
v := lapack64.Gecon(lnorm, tmp.mat, aNorm, work, iwork) v := lapack64.Gecon(lnorm, tmp.mat, aNorm, work, iwork)
putWorkspace(tmp) putWorkspace(tmp)
putFloats(work)
putInts(pivot)
return 1 / v return 1 / v
} }
if m > n { if m > n {
// Use the QR factorization to compute the condition number. // Use the QR factorization to compute the condition number.
tmp := getWorkspace(m, n, false) tmp := getWorkspace(m, n, false)
tmp.Copy(a) tmp.Copy(a)
work := make([]float64, 3*n) work := getFloats(3*n, false)
tau := make([]float64, min(m, n)) tau := getFloats(min(m, n), false)
lapack64.Geqrf(tmp.mat, tau, work, -1) lapack64.Geqrf(tmp.mat, tau, work, -1)
if int(work[0]) > len(work) { if l := int(work[0]); l > len(work) {
work = make([]float64, int(work[0])) putFloats(work)
work = getFloats(l, false)
} }
lapack64.Geqrf(tmp.mat, tau, work, len(work)) lapack64.Geqrf(tmp.mat, tau, work, len(work))
iwork := make([]int, n) iwork := getInts(n, false)
r := tmp.asTriDense(n, blas.NonUnit, blas.Upper) r := tmp.asTriDense(n, blas.NonUnit, blas.Upper)
v := lapack64.Trcon(lnorm, r.mat, work, iwork) v := lapack64.Trcon(lnorm, r.mat, work, iwork)
putWorkspace(tmp) putWorkspace(tmp)
putFloats(work)
putFloats(tau)
putInts(iwork)
return 1 / v return 1 / v
} }
// Use the LQ factorization to compute the condition number. // Use the LQ factorization to compute the condition number.
tmp := getWorkspace(m, n, false) tmp := getWorkspace(m, n, false)
tmp.Copy(a) tmp.Copy(a)
work := make([]float64, 3*m) work := getFloats(3*m, false)
tau := make([]float64, min(m, n)) tau := getFloats(min(m, n), false)
lapack64.Gelqf(tmp.mat, tau, work, -1) lapack64.Gelqf(tmp.mat, tau, work, -1)
if int(work[0]) > len(work) { if l := int(work[0]); l > len(work) {
work = make([]float64, int(work[0])) putFloats(work)
work = getFloats(l, false)
} }
lapack64.Gelqf(tmp.mat, tau, work, len(work)) lapack64.Gelqf(tmp.mat, tau, work, len(work))
iwork := make([]int, m) iwork := getInts(m, false)
l := tmp.asTriDense(m, blas.NonUnit, blas.Lower) l := tmp.asTriDense(m, blas.NonUnit, blas.Lower)
v := lapack64.Trcon(lnorm, l.mat, work, iwork) v := lapack64.Trcon(lnorm, l.mat, work, iwork)
putWorkspace(tmp) putWorkspace(tmp)
putFloats(work)
putFloats(tau)
putInts(iwork)
return 1 / v return 1 / v
} }
@@ -679,21 +689,24 @@ func Norm(a Matrix, norm float64) float64 {
rm := rma.RawMatrix() rm := rma.RawMatrix()
n := normLapack(norm, aTrans) n := normLapack(norm, aTrans)
if n == lapack.MaxColumnSum { if n == lapack.MaxColumnSum {
work = make([]float64, rm.Cols) work = getFloats(rm.Cols, false)
defer putFloats(work)
} }
return lapack64.Lange(n, rm, work) return lapack64.Lange(n, rm, work)
case RawTriangular: case RawTriangular:
rm := rma.RawTriangular() rm := rma.RawTriangular()
n := normLapack(norm, aTrans) n := normLapack(norm, aTrans)
if n == lapack.MaxRowSum || n == lapack.MaxColumnSum { if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
work = make([]float64, rm.N) work = getFloats(rm.N, false)
defer putFloats(work)
} }
return lapack64.Lantr(n, rm, work) return lapack64.Lantr(n, rm, work)
case RawSymmetricer: case RawSymmetricer:
rm := rma.RawSymmetric() rm := rma.RawSymmetric()
n := normLapack(norm, aTrans) n := normLapack(norm, aTrans)
if n == lapack.MaxRowSum || n == lapack.MaxColumnSum { if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
work = make([]float64, rm.N) work = getFloats(rm.N, false)
defer putFloats(work)
} }
return lapack64.Lansy(n, rm, work) return lapack64.Lansy(n, rm, work)
case *Vector: case *Vector:

View File

@@ -54,6 +54,12 @@ var (
// poolVec is the Vector equivalent of pool. // poolVec is the Vector equivalent of pool.
poolVec [63]sync.Pool poolVec [63]sync.Pool
// poolFloats is the []float64 equivalent of pool.
poolFloats [63]sync.Pool
// poolInts is the []int equivalent of pool.
poolInts [63]sync.Pool
) )
func init() { func init() {
@@ -81,6 +87,12 @@ func init() {
Data: make([]float64, l), Data: make([]float64, l),
}} }}
} }
poolFloats[i].New = func() interface{} {
return make([]float64, l)
}
poolInts[i].New = func() interface{} {
return make([]int, l)
}
} }
} }
@@ -182,3 +194,41 @@ func getWorkspaceVec(n int, clear bool) *Vector {
func putWorkspaceVec(v *Vector) { func putWorkspaceVec(v *Vector) {
poolVec[bits(uint64(cap(v.mat.Data)))].Put(v) poolVec[bits(uint64(cap(v.mat.Data)))].Put(v)
} }
// getFloats returns a []float64 of length l and a cap that is
// less than 2*l. If clear is true, the slice visible is zeroed.
func getFloats(l int, clear bool) []float64 {
w := poolFloats[bits(uint64(l))].Get().([]float64)
w = w[:l]
if clear {
zero(w)
}
return w
}
// putFloats replaces a used []float64 into the appropriate size
// workspace pool. putFloats must not be called with a slice
// where references to the underlying data have been kept.
func putFloats(w []float64) {
poolFloats[bits(uint64(cap(w)))].Put(w)
}
// getInts returns a []ints of length l and a cap that is
// less than 2*l. If clear is true, the slice visible is zeroed.
func getInts(l int, clear bool) []int {
w := poolInts[bits(uint64(l))].Get().([]int)
w = w[:l]
if clear {
for i := range w {
w[i] = 0
}
}
return w
}
// putInts replaces a used []int into the appropriate size
// workspace pool. putInts must not be called with a slice
// where references to the underlying data have been kept.
func putInts(w []int) {
poolInts[bits(uint64(cap(w)))].Put(w)
}

View File

@@ -25,10 +25,12 @@ func (qr *QR) updateCond() {
// A = QR, where Q is orthonormal. Orthonormal multiplications do not change // A = QR, where Q is orthonormal. Orthonormal multiplications do not change
// the condition number. Thus, ||A|| = ||Q|| ||R|| = ||R||. // the condition number. Thus, ||A|| = ||Q|| ||R|| = ||R||.
n := qr.qr.mat.Cols n := qr.qr.mat.Cols
work := make([]float64, 3*n) work := getFloats(3*n, false)
iwork := make([]int, n) iwork := getInts(n, false)
r := qr.qr.asTriDense(n, blas.NonUnit, blas.Upper) r := qr.qr.asTriDense(n, blas.NonUnit, blas.Upper)
v := lapack64.Trcon(matrix.CondNorm, r.mat, work, iwork) v := lapack64.Trcon(matrix.CondNorm, r.mat, work, iwork)
putFloats(work)
putInts(iwork)
qr.cond = 1 / v qr.cond = 1 / v
} }
@@ -48,12 +50,13 @@ func (qr *QR) Factorize(a Matrix) {
qr.qr = &Dense{} qr.qr = &Dense{}
} }
qr.qr.Clone(a) qr.qr.Clone(a)
work := make([]float64, 1) work := []float64{0}
qr.tau = make([]float64, k) qr.tau = make([]float64, k)
lapack64.Geqrf(qr.qr.mat, qr.tau, work, -1) lapack64.Geqrf(qr.qr.mat, qr.tau, work, -1)
work = make([]float64, int(work[0])) work = getFloats(int(work[0]), false)
lapack64.Geqrf(qr.qr.mat, qr.tau, work, len(work)) lapack64.Geqrf(qr.qr.mat, qr.tau, work, len(work))
putFloats(work)
qr.updateCond() qr.updateCond()
} }
@@ -107,10 +110,11 @@ func (qr *QR) QTo(dst *Dense) *Dense {
} }
// Construct Q from the elementary reflectors. // Construct Q from the elementary reflectors.
work := make([]float64, 1) work := []float64{0}
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, -1) lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, -1)
work = make([]float64, int(work[0])) work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, len(work)) lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, len(work))
putFloats(work)
return dst return dst
} }
@@ -156,15 +160,17 @@ func (m *Dense) SolveQR(qr *QR, trans bool, b Matrix) error {
for i := c; i < r; i++ { for i := c; i < r; i++ {
zero(x.mat.Data[i*x.mat.Stride : i*x.mat.Stride+bc]) zero(x.mat.Data[i*x.mat.Stride : i*x.mat.Stride+bc])
} }
work := make([]float64, 1) work := []float64{0}
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, x.mat, work, -1) lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, x.mat, work, -1)
work = make([]float64, int(work[0])) work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, x.mat, work, len(work)) lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, x.mat, work, len(work))
putFloats(work)
} else { } else {
work := make([]float64, 1) work := []float64{0}
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, x.mat, work, -1) lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, x.mat, work, -1)
work = make([]float64, int(work[0])) work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, x.mat, work, len(work)) lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, x.mat, work, len(work))
putFloats(work)
ok := lapack64.Trtrs(blas.NoTrans, t, x.mat) ok := lapack64.Trtrs(blas.NoTrans, t, x.mat)
if !ok { if !ok {

View File

@@ -64,9 +64,11 @@ func (m *Dense) Solve(a, b Matrix) error {
rm := rma.RawTriangular() rm := rma.RawTriangular()
blas64.Trsm(side, tA, 1, rm, m.mat) blas64.Trsm(side, tA, 1, rm, m.mat)
work := make([]float64, 3*rm.N) work := getFloats(3*rm.N, false)
iwork := make([]int, rm.N) iwork := getInts(rm.N, false)
cond := lapack64.Trcon(matrix.CondNorm, rm, work, iwork) cond := lapack64.Trcon(matrix.CondNorm, rm, work, iwork)
putFloats(work)
putInts(iwork)
if cond > matrix.ConditionTolerance { if cond > matrix.ConditionTolerance {
return matrix.Condition(cond) return matrix.Condition(cond)
} }

View File

@@ -92,10 +92,11 @@ func (svd *SVD) Factorize(a Matrix, kind matrix.SVDKind) (ok bool) {
svd.kind = kind svd.kind = kind
svd.s = use(svd.s, min(m, n)) svd.s = use(svd.s, min(m, n))
work := make([]float64, 1) work := []float64{0}
lapack64.Gesvd(jobU, jobVT, aCopy.mat, svd.u, svd.vt, svd.s, work, -1) lapack64.Gesvd(jobU, jobVT, aCopy.mat, svd.u, svd.vt, svd.s, work, -1)
work = make([]float64, int(work[0])) work = getFloats(int(work[0]), false)
ok = lapack64.Gesvd(jobU, jobVT, aCopy.mat, svd.u, svd.vt, svd.s, work, len(work)) ok = lapack64.Gesvd(jobU, jobVT, aCopy.mat, svd.u, svd.vt, svd.s, work, len(work))
putFloats(work)
if !ok { if !ok {
svd.kind = 0 svd.kind = 0
} }

View File

@@ -331,9 +331,11 @@ func (t *TriDense) InverseTri(a Triangular) error {
n, _ := a.Triangle() n, _ := a.Triangle()
t.reuseAs(a.Triangle()) t.reuseAs(a.Triangle())
t.Copy(a) t.Copy(a)
work := make([]float64, 3*n) work := getFloats(3*n, false)
iwork := make([]int, n) iwork := getInts(n, false)
cond := lapack64.Trcon(matrix.CondNorm, t.mat, work, iwork) cond := lapack64.Trcon(matrix.CondNorm, t.mat, work, iwork)
putFloats(work)
putInts(iwork)
if math.IsInf(cond, 1) { if math.IsInf(cond, 1) {
return matrix.Condition(cond) return matrix.Condition(cond)
} }