graph/path: use queue-based Bellman-Ford algorithm

See Sedgewick and Wayne, Algorithms 4th Edition from p672 onward.
This commit is contained in:
Dario Navin
2019-09-02 01:06:32 +02:00
committed by Dan Kortschak
parent d61003946d
commit 88884a56e9
2 changed files with 119 additions and 28 deletions

View File

@@ -4,7 +4,10 @@
package path
import "gonum.org/v1/gonum/graph"
import (
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/linear"
)
// BellmanFordFrom returns a shortest-path tree for a shortest path from u to all nodes in
// the graph g, or false indicating that a negative cycle exists in the graph. If the graph
@@ -27,33 +30,24 @@ func BellmanFordFrom(u graph.Node, g graph.Graph) (path Shortest, ok bool) {
path = newShortestFrom(u, nodes)
path.dist[path.indexOf[u.ID()]] = 0
// Queue to keep track which nodes need to be relaxed.
// Only nodes whose vertex distance changed in the previous iterations need to be relaxed again.
queue := newBellmanFordQueue(path.indexOf)
queue.enqueue(u)
// The maximum of edges in a graph is |V| * (|V|-1) which is also the worst case complexity.
// If the queue-loop has more iterations than the amount of maximum edges
// it indicates that we have a negative cycle.
maxEdges := len(nodes) * (len(nodes) - 1)
var loops int
// TODO(kortschak): Consider adding further optimisations
// from http://arxiv.org/abs/1111.5414.
for i := 1; i < len(nodes); i++ {
changed := false
for j, u := range nodes {
uid := u.ID()
for _, v := range graph.NodesOf(g.From(uid)) {
vid := v.ID()
k := path.indexOf[vid]
w, ok := weight(uid, vid)
if !ok {
panic("bellman-ford: unexpected invalid weight")
}
joint := path.dist[j] + w
if joint < path.dist[k] {
path.set(k, joint, j)
changed = true
}
}
}
if !changed {
break
}
}
for j, u := range nodes {
for queue.len() != 0 {
u := queue.dequeue()
uid := u.ID()
j := path.indexOf[uid]
for _, v := range graph.NodesOf(g.From(uid)) {
vid := v.ID()
k := path.indexOf[vid]
@@ -61,12 +55,66 @@ func BellmanFordFrom(u graph.Node, g graph.Graph) (path Shortest, ok bool) {
if !ok {
panic("bellman-ford: unexpected invalid weight")
}
if path.dist[j]+w < path.dist[k] {
path.hasNegativeCycle = true
return path, false
joint := path.dist[j] + w
if joint < path.dist[k] {
path.set(k, joint, j)
if !queue.has(vid) {
queue.enqueue(v)
}
}
}
if loops > maxEdges {
path.hasNegativeCycle = true
return path, false
}
loops++
}
return path, true
}
// bellmanFordQueue is a queue for the Queue-based Bellman-Ford algorithm.
type bellmanFordQueue struct {
// queue holds the nodes which need to be relaxed.
queue linear.NodeQueue
// onQueue keeps track whether a node is on the queue or not.
onQueue []bool
// indexOf contains a mapping holding the id of a node with its index in the onQueue array.
indexOf map[int64]int
}
// enqueue adds a node to the bellmanFordQueue.
func (q *bellmanFordQueue) enqueue(n graph.Node) {
i := q.indexOf[n.ID()]
if q.onQueue[i] {
panic("bellman-ford: already queued")
}
q.onQueue[i] = true
q.queue.Enqueue(n)
}
// dequeue returns the first value of the bellmanFordQueue.
func (q *bellmanFordQueue) dequeue() graph.Node {
n := q.queue.Dequeue()
q.onQueue[q.indexOf[n.ID()]] = false
return n
}
// len returns the number of nodes in the bellmanFordQueue.
func (q *bellmanFordQueue) len() int { return q.queue.Len() }
// has returns whether a node with the given id is in the queue.
func (q bellmanFordQueue) has(id int64) bool { return q.onQueue[q.indexOf[id]] }
// newBellmanFordQueue creates a new bellmanFordQueue.
func newBellmanFordQueue(indexOf map[int64]int) bellmanFordQueue {
return bellmanFordQueue{
onQueue: make([]bool, len(indexOf)),
indexOf: indexOf,
}
}

View File

@@ -139,3 +139,46 @@ func BenchmarkAStarUndirectedmallWorld_100_5_20_2_Heur(b *testing.B) {
}
benchmarkAStarHeuristic(b, nswUndirected_100_5_20_2, h)
}
var (
gnpDirected_500_tenth = gnpDirected(500, 0.1)
gnpDirected_1000_tenth = gnpDirected(1000, 0.1)
gnpDirected_2000_tenth = gnpDirected(2000, 0.1)
gnpDirected_500_half = gnpDirected(500, 0.5)
gnpDirected_1000_half = gnpDirected(1000, 0.5)
gnpDirected_2000_half = gnpDirected(2000, 0.5)
gnpDirected_500_full = gnpDirected(500, 1)
gnpDirected_1000_full = gnpDirected(1000, 1)
gnpDirected_2000_full = gnpDirected(2000, 1)
)
func gnpDirected(n int, p float64) graph.Directed {
g := simple.NewDirectedGraph()
gen.Gnp(g, n, p, nil)
return g
}
func BenchmarkBellmanFordFrom(b *testing.B) {
benchmarks := []struct {
name string
graph graph.Directed
}{
{"500 tenth", gnpDirected_500_tenth},
{"1000 tenth", gnpDirected_1000_tenth},
{"2000 tenth", gnpDirected_2000_tenth},
{"500 half", gnpDirected_500_half},
{"1000 half", gnpDirected_1000_half},
{"2000 half", gnpDirected_2000_half},
{"500 full", gnpDirected_500_full},
{"1000 full", gnpDirected_1000_full},
{"2000 full", gnpDirected_2000_full},
}
for _, bm := range benchmarks {
b.Run(bm.name, func(b *testing.B) {
for i := 0; i < b.N; i++ {
BellmanFordFrom(bm.graph.Node(0), bm.graph)
}
})
}
}