stat/distuv: add logistic distribution

This commit is contained in:
gudvinr
2021-11-04 12:08:21 +03:00
committed by GitHub
parent 03c2b7f8f1
commit 855d38ebe8
3 changed files with 273 additions and 0 deletions

View File

@@ -17,6 +17,10 @@ const (
// EulerMascheroni constant. // EulerMascheroni constant.
eulerGamma = 0.5772156649015328606065120900824024310421593359399235988057672348848677267776646709369470632917467495146314472498070824809605 eulerGamma = 0.5772156649015328606065120900824024310421593359399235988057672348848677267776646709369470632917467495146314472498070824809605
// sqrt3 is the value of sqrt(3)
// https://www.wolframalpha.com/input/?i=sqrt%283%29
sqrt3 = 1.7320508075688772935274463415058723669428052538103806280558069794519330169088000370811461867572485756756261414154067030299699450
) )
const ( const (

97
stat/distuv/logistic.go Normal file
View File

@@ -0,0 +1,97 @@
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distuv
import (
"math"
)
// Logistic implements the Logistic distribution, a two-parameter distribution with support on the real axis.
// Its cumulative distribution function is the logistic function.
//
// General form of probability density fuction for Logistic distribution is
// E(x) / (s * (1 + E(x))^2)
// where E(x) = exp(-(x-μ)/s)
//
// For more information, see https://en.wikipedia.org/wiki/Logistic_distribution.
type Logistic struct {
Mu float64 // Mean value
S float64 // Scale parameter proportional to standard deviation
}
// CDF computes the value of the cumulative density function at x.
func (l Logistic) CDF(x float64) float64 {
return 1 / (1 + math.Exp(-(x-l.Mu)/l.S))
}
// ExKurtosis returns the excess kurtosis of the distribution.
func (l Logistic) ExKurtosis() float64 {
return 6.0 / 5.0
}
// LogProb computes the natural logarithm of the value of the probability
// density function at x.
func (l Logistic) LogProb(x float64) float64 {
return x - 2*math.Log(math.Exp(x)+1)
}
// Mean returns the mean of the probability distribution.
func (l Logistic) Mean() float64 {
return l.Mu
}
// Mode returns the mode of the distribution.
//
// It is same as Mean for Logistic distribution.
func (l Logistic) Mode() float64 {
return l.Mu
}
// Median returns the median of the distribution.
//
// It is same as Mean for Logistic distribution.
func (l Logistic) Median() float64 {
return l.Mu
}
// NumParameters returns the number of parameters in the distribution.
//
// Always returns 2.
func (l Logistic) NumParameters() int {
return 2
}
// Prob computes the value of the probability density function at x.
func (l Logistic) Prob(x float64) float64 {
E := math.Exp(-(x - l.Mu) / l.S)
return E / (l.S * math.Pow(1+E, 2))
}
// Quantile returns the inverse of the cumulative distribution function.
func (l Logistic) Quantile(p float64) float64 {
return l.Mu + l.S*math.Log(p/(1-p))
}
// Skewness returns the skewness of the distribution.
//
// Always 0 for Logistic distribution.
func (l Logistic) Skewness() float64 {
return 0
}
// StdDev returns the standard deviation of the probability distribution.
func (l Logistic) StdDev() float64 {
return l.S * math.Pi / sqrt3
}
// Survival returns the survival function (complementary CDF) at x.
func (l Logistic) Survival(x float64) float64 {
return 1 - l.CDF(x)
}
// Variance returns the variance of the probability distribution.
func (l Logistic) Variance() float64 {
return l.S * l.S * math.Pi * math.Pi / 3
}

View File

@@ -0,0 +1,172 @@
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distuv
import (
"math"
"testing"
"gonum.org/v1/gonum/floats/scalar"
)
func TestLogisticParameters(t *testing.T) {
t.Parallel()
var want float64
l := Logistic{Mu: 1, S: 0}
want = 2
if result := l.NumParameters(); result != int(want) {
t.Errorf("Wrong number of parameters: %d != %.0f", result, want)
}
want = 6.0 / 5.0
if result := l.ExKurtosis(); result != want {
t.Errorf("Wrong excess kurtosis: %f != %f", result, want)
}
want = 0.0
if result := l.Skewness(); result != want {
t.Errorf("Wrong skewness: %f != %f", result, want)
}
want = l.Mu
if result := l.Mean(); result != want {
t.Errorf("Wrong mean value: %f != %f", result, want)
}
want = l.Mu
if result := l.Median(); result != want {
t.Errorf("Wrong median value: %f != %f", result, want)
}
want = l.Mu
if result := l.Mode(); result != want {
t.Errorf("Wrong mode value: %f != %f", result, want)
}
}
func TestLogisticStdDev(t *testing.T) {
t.Parallel()
l := Logistic{Mu: 0, S: sqrt3 / math.Pi}
want := 1.0
if result := l.StdDev(); !scalar.EqualWithinAbs(result, want, 1e-10) {
t.Errorf("Wrong StdDev with Mu=%f, S=%f: %f != %f", l.Mu, l.S, result, want)
}
want = 1.0
if result := l.Variance(); !scalar.EqualWithinAbs(result, want, 1e-10) {
t.Errorf("Wrong Variance with Mu=%f, S=%f: %f != %f", l.Mu, l.S, result, want)
}
}
func TestLogisticCDF(t *testing.T) {
t.Parallel()
// Values for "want" are taken from WolframAlpha: CDF[LogisticDistribution[mu,s], input] to 10 digits.
for _, v := range []struct {
mu, s, input, want float64
}{
{0.0, 0.0, 1.0, 1.0},
{0.0, 1.0, 0.0, 0.5},
{-0.5, 1.0, 0.0, 0.6224593312},
{69.0, 420.0, 42.0, 0.4839341039},
} {
l := Logistic{Mu: v.mu, S: v.s}
if result := l.CDF(v.input); !scalar.EqualWithinAbs(result, v.want, 1e-10) {
t.Errorf("Wrong CDF(%f) with Mu=%f, S=%f: %f != %f", v.input, l.Mu, l.S, result, v.want)
}
}
// Edge case of zero in denominator.
l := Logistic{Mu: 0, S: 0}
input := 0.0
if result := l.CDF(input); !math.IsNaN(result) {
t.Errorf("Wrong CDF(%f) with Mu=%f, S=%f: %f is not NaN", input, l.Mu, l.S, result)
}
}
// TestLogisticSurvival doesn't need excessive testing since it's just 1-CDF.
func TestLogisticSurvival(t *testing.T) {
t.Parallel()
l := Logistic{Mu: 0, S: 1}
input, want := 0.0, 0.5
if result := l.Survival(input); result != want {
t.Errorf("Wrong Survival(%f) with Mu=%f, S=%f: %f != %f", input, l.Mu, l.S, result, want)
}
}
func TestLogisticProb(t *testing.T) {
t.Parallel()
// Values for "want" are taken from WolframAlpha: PDF[LogisticDistribution[mu,s], input] to 10 digits.
for _, v := range []struct {
mu, s, input, want float64
}{
{0.0, 1.0, 0.0, 0.25},
{-0.5, 1.0, 0.0, 0.2350037122},
{69.0, 420.0, 42.0, 0.0005946235404},
} {
l := Logistic{Mu: v.mu, S: v.s}
if result := l.Prob(v.input); !scalar.EqualWithinAbs(result, v.want, 1e-10) {
t.Errorf("Wrong Prob(%f) with Mu=%f, S=%f: %.09f != %.09f", v.input, l.Mu, l.S, result, v.want)
}
}
// Edge case of zero in denominator.
l := Logistic{Mu: 0, S: 0}
input := 0.0
if result := l.Prob(input); !math.IsNaN(result) {
t.Errorf("Wrong Prob(%f) with Mu=%f, S=%f: %f is not NaN", input, l.Mu, l.S, result)
}
input = 1.0
if result := l.Prob(input); !math.IsNaN(result) {
t.Errorf("Wrong Prob(%f) with Mu=%f, S=%f: %f is not NaN", input, l.Mu, l.S, result)
}
}
func TestLogisticLogProb(t *testing.T) {
t.Parallel()
l := Logistic{Mu: 0, S: 1}
input, want := 0.0, -math.Log(4)
if result := l.LogProb(input); result != want {
t.Errorf("Wrong LogProb(%f) with Mu=%f, S=%f: %f != %f", input, l.Mu, l.S, result, want)
}
}
func TestQuantile(t *testing.T) {
t.Parallel()
for _, v := range []struct {
mu, s, input, want float64
}{
{0.0, 1.0, 0.5, 0.0},
{0.0, 1.0, 0.0, math.Inf(-1)},
{0.0, 1.0, 1.0, math.Inf(+1)},
} {
l := Logistic{Mu: v.mu, S: v.s}
if result := l.Quantile(v.input); result != v.want {
t.Errorf("Wrong Quantile(%f) with Mu=%f, S=%f: %f != %f", v.input, l.Mu, l.S, result, v.want)
}
}
// Edge case with NaN.
l := Logistic{Mu: 0, S: 0}
input := 0.0
if result := l.Quantile(input); !math.IsNaN(result) {
t.Errorf("Wrong Quantile(%f) with Mu=%f, S=%f: %f is not NaN", input, l.Mu, l.S, result)
}
}