mirror of
https://github.com/gonum/gonum.git
synced 2025-10-11 18:10:10 +08:00
spatial/r3: remove duplicated API
This commit is contained in:
@@ -4,13 +4,7 @@
|
||||
|
||||
package r3
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"gonum.org/v1/gonum/blas/blas64"
|
||||
"gonum.org/v1/gonum/mat"
|
||||
"gonum.org/v1/gonum/num/quat"
|
||||
)
|
||||
import "math"
|
||||
|
||||
// Vec is a 3D vector.
|
||||
type Vec struct {
|
||||
@@ -93,95 +87,3 @@ func Cos(p, q Vec) float64 {
|
||||
type Box struct {
|
||||
Min, Max Vec
|
||||
}
|
||||
|
||||
// TODO: possibly useful additions to the current rotation API:
|
||||
// - create rotations from Euler angles (NewRotationFromEuler?)
|
||||
// - create rotations from rotation matrices (NewRotationFromMatrix?)
|
||||
// - return the equivalent Euler angles from a Rotation
|
||||
//
|
||||
// Euler angles have issues (see [1] for a discussion).
|
||||
// We should think carefully before adding them in.
|
||||
// [1]: http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
|
||||
|
||||
// Rotation describes a rotation in space.
|
||||
type Rotation quat.Number
|
||||
|
||||
// NewRotation creates a rotation by alpha, around axis.
|
||||
func NewRotation(alpha float64, axis Vec) Rotation {
|
||||
if alpha == 0 {
|
||||
return Rotation{Real: 1}
|
||||
}
|
||||
q := raise(axis)
|
||||
sin, cos := math.Sincos(0.5 * alpha)
|
||||
q = quat.Scale(sin/quat.Abs(q), q)
|
||||
q.Real += cos
|
||||
if len := quat.Abs(q); len != 1 {
|
||||
q = quat.Scale(1/len, q)
|
||||
}
|
||||
|
||||
return Rotation(q)
|
||||
}
|
||||
|
||||
// Rotate returns p rotated according to the parameters used to construct
|
||||
// the receiver.
|
||||
func (r Rotation) Rotate(p Vec) Vec {
|
||||
if r.isIdentity() {
|
||||
return p
|
||||
}
|
||||
qq := quat.Number(r)
|
||||
pp := quat.Mul(quat.Mul(qq, raise(p)), quat.Conj(qq))
|
||||
return Vec{X: pp.Imag, Y: pp.Jmag, Z: pp.Kmag}
|
||||
}
|
||||
|
||||
func (r Rotation) isIdentity() bool {
|
||||
return r == Rotation{Real: 1}
|
||||
}
|
||||
|
||||
func raise(p Vec) quat.Number {
|
||||
return quat.Number{Imag: p.X, Jmag: p.Y, Kmag: p.Z}
|
||||
}
|
||||
|
||||
// Matrix returns a 3×3 rotation matrix corresponding to the receiver. It
|
||||
// may be used to perform rotations on a 3-vector or to apply the rotation
|
||||
// to a 3×n matrix of column vectors. If the receiver is not a unit
|
||||
// quaternion, the returned matrix will not be a pure rotation.
|
||||
func (r Rotation) Matrix() mat.Matrix {
|
||||
re, im, jm, km := r.Real, r.Imag, r.Jmag, r.Kmag
|
||||
im2 := im * im
|
||||
jm2 := jm * jm
|
||||
km2 := km * km
|
||||
rim := re * im
|
||||
rjm := re * jm
|
||||
rkm := re * km
|
||||
ijm := im * jm
|
||||
jkm := jm * km
|
||||
kim := km * im
|
||||
return &matrix{
|
||||
1 - 2*(jm2+km2), 2 * (ijm - rkm), 2 * (kim + rjm),
|
||||
2 * (ijm + rkm), 1 - 2*(im2+km2), 2 * (jkm - rim),
|
||||
2 * (kim - rjm), 2 * (jkm + rim), 1 - 2*(im2+jm2),
|
||||
}
|
||||
}
|
||||
|
||||
// matrix is a 3×3 rotation matrix.
|
||||
type matrix [9]float64
|
||||
|
||||
var (
|
||||
_ mat.Matrix = (*matrix)(nil)
|
||||
_ mat.RawMatrixer = (*matrix)(nil)
|
||||
)
|
||||
|
||||
func (m *matrix) At(i, j int) float64 {
|
||||
if uint(i) >= 3 {
|
||||
panic(mat.ErrRowAccess)
|
||||
}
|
||||
if uint(j) >= 3 {
|
||||
panic(mat.ErrColAccess)
|
||||
}
|
||||
return m[i*3+j]
|
||||
}
|
||||
func (m *matrix) Dims() (r, c int) { return 3, 3 }
|
||||
func (m *matrix) T() mat.Matrix { return mat.Transpose{Matrix: m} }
|
||||
func (m *matrix) RawMatrix() blas64.General {
|
||||
return blas64.General{Rows: 3, Cols: 3, Data: m[:], Stride: 3}
|
||||
}
|
||||
|
Reference in New Issue
Block a user