mirror of
https://github.com/gonum/gonum.git
synced 2025-10-23 23:23:15 +08:00
Add Dormbr and test
This commit is contained in:
174
cgo/lapack.go
174
cgo/lapack.go
@@ -13,35 +13,36 @@ import (
|
|||||||
|
|
||||||
// Copied from lapack/native. Keep in sync.
|
// Copied from lapack/native. Keep in sync.
|
||||||
const (
|
const (
|
||||||
absIncNotOne = "lapack: increment not one or negative one"
|
absIncNotOne = "lapack: increment not one or negative one"
|
||||||
badD = "lapack: d has insufficient length"
|
badD = "lapack: d has insufficient length"
|
||||||
badDiag = "lapack: bad diag"
|
badDecompUpdate = "lapack: bad decomp update"
|
||||||
badDirect = "lapack: bad direct"
|
badDiag = "lapack: bad diag"
|
||||||
badE = "lapack: e has insufficient length"
|
badDirect = "lapack: bad direct"
|
||||||
badIpiv = "lapack: insufficient permutation length"
|
badE = "lapack: e has insufficient length"
|
||||||
badLdA = "lapack: index of a out of range"
|
badIpiv = "lapack: insufficient permutation length"
|
||||||
badNorm = "lapack: bad norm"
|
badLdA = "lapack: index of a out of range"
|
||||||
badPivot = "lapack: bad pivot"
|
badNorm = "lapack: bad norm"
|
||||||
badSide = "lapack: bad side"
|
badPivot = "lapack: bad pivot"
|
||||||
badSlice = "lapack: bad input slice length"
|
badSide = "lapack: bad side"
|
||||||
badStore = "lapack: bad store"
|
badSlice = "lapack: bad input slice length"
|
||||||
badTau = "lapack: tau has insufficient length"
|
badStore = "lapack: bad store"
|
||||||
badTauQ = "lapack: tauQ has insufficient length"
|
badTau = "lapack: tau has insufficient length"
|
||||||
badTauP = "lapack: tauP has insufficient length"
|
badTauQ = "lapack: tauQ has insufficient length"
|
||||||
badTrans = "lapack: bad trans"
|
badTauP = "lapack: tauP has insufficient length"
|
||||||
badUplo = "lapack: illegal triangle"
|
badTrans = "lapack: bad trans"
|
||||||
badWork = "lapack: insufficient working memory"
|
badUplo = "lapack: illegal triangle"
|
||||||
badWorkStride = "lapack: insufficient working array stride"
|
badWork = "lapack: insufficient working memory"
|
||||||
badZ = "lapack: insufficient z length"
|
badWorkStride = "lapack: insufficient working array stride"
|
||||||
kGTM = "lapack: k > m"
|
badZ = "lapack: insufficient z length"
|
||||||
kGTN = "lapack: k > n"
|
kGTM = "lapack: k > m"
|
||||||
kLT0 = "lapack: k < 0"
|
kGTN = "lapack: k > n"
|
||||||
mLTN = "lapack: m < n"
|
kLT0 = "lapack: k < 0"
|
||||||
negDimension = "lapack: negative matrix dimension"
|
mLTN = "lapack: m < n"
|
||||||
negZ = "lapack: negative z value"
|
negDimension = "lapack: negative matrix dimension"
|
||||||
nLT0 = "lapack: n < 0"
|
negZ = "lapack: negative z value"
|
||||||
nLTM = "lapack: n < m"
|
nLT0 = "lapack: n < 0"
|
||||||
shortWork = "lapack: working array shorter than declared"
|
nLTM = "lapack: n < m"
|
||||||
|
shortWork = "lapack: working array shorter than declared"
|
||||||
)
|
)
|
||||||
|
|
||||||
func min(m, n int) int {
|
func min(m, n int) int {
|
||||||
@@ -170,6 +171,74 @@ func (impl Implementation) Dpotrf(ul blas.Uplo, n int, a []float64, lda int) (ok
|
|||||||
return clapack.Dpotrf(ul, n, a, lda)
|
return clapack.Dpotrf(ul, n, a, lda)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Dgebrd reduces a general m×n matrix A to upper or lower bidiagonal form B by
|
||||||
|
// an orthogonal transformation:
|
||||||
|
// Q^T * A * P = B.
|
||||||
|
// The diagonal elements of B are stored in d and the off-diagonal elements are
|
||||||
|
// stored in e. These are additionally stored along the diagonal of A and the
|
||||||
|
// off-diagonal of A. If m >= n B is an upper-bidiagonal matrix, and if m < n B
|
||||||
|
// is a lower-bidiagonal matrix.
|
||||||
|
//
|
||||||
|
// The remaining elements of A store the data needed to construct Q and P.
|
||||||
|
// The matrices Q and P are products of elementary reflectors
|
||||||
|
// Q = H_1 * H_2 * ... * H_nb
|
||||||
|
// P = G_1 * G_2 * ... * G_nb
|
||||||
|
// where
|
||||||
|
// H_i = I - tauQ[i] * v_i * v_i^T
|
||||||
|
// G_i = I - tauP[i] * u_i * u_i^T
|
||||||
|
//
|
||||||
|
// As an example, on exit the entries of A when m = 6, and n = 5
|
||||||
|
// ( d e u1 u1 u1 )
|
||||||
|
// ( v1 d e u2 u2 )
|
||||||
|
// ( v1 v2 d e u3 )
|
||||||
|
// ( v1 v2 v3 d e )
|
||||||
|
// ( v1 v2 v3 v4 d )
|
||||||
|
// ( v1 v2 v3 v4 v5 )
|
||||||
|
// and when m = 5, n = 6
|
||||||
|
// ( d u1 u1 u1 u1 u1 )
|
||||||
|
// ( e d u2 u2 u2 u2 )
|
||||||
|
// ( v1 e d u3 u3 u3 )
|
||||||
|
// ( v1 v2 e d u4 u4 )
|
||||||
|
// ( v1 v2 v3 e d u5 )
|
||||||
|
//
|
||||||
|
// d, tauQ, and tauP must all have length at least min(m,n), and e must have
|
||||||
|
// length min(m,n) - 1.
|
||||||
|
//
|
||||||
|
// Work is temporary storage, and lwork specifies the usable memory length.
|
||||||
|
// At minimum, lwork >= max(m,n) and this function will panic otherwise.
|
||||||
|
// The C interface does not support providing temporary storage. To provide compatibility
|
||||||
|
// with native, lwork == -1 will not run Dgeqrf but will instead write the minimum
|
||||||
|
// work necessary to work[0]. If len(work) < lwork, Dgbrd will panic.
|
||||||
|
func (impl Implementation) Dgebrd(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64, lwork int) {
|
||||||
|
checkMatrix(m, n, a, lda)
|
||||||
|
minmn := min(m, n)
|
||||||
|
if len(d) < minmn {
|
||||||
|
panic(badD)
|
||||||
|
}
|
||||||
|
if len(e) < minmn-1 {
|
||||||
|
panic(badE)
|
||||||
|
}
|
||||||
|
if len(tauQ) < minmn {
|
||||||
|
panic(badTauQ)
|
||||||
|
}
|
||||||
|
if len(tauP) < minmn {
|
||||||
|
panic(badTauP)
|
||||||
|
}
|
||||||
|
ws := max(m, n)
|
||||||
|
if lwork == -1 {
|
||||||
|
work[0] = float64(ws)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
if lwork < ws {
|
||||||
|
panic(badWork)
|
||||||
|
}
|
||||||
|
if len(work) < lwork {
|
||||||
|
panic(badWork)
|
||||||
|
}
|
||||||
|
|
||||||
|
clapack.Dgebrd(m, n, a, lda, d, e, tauQ, tauP)
|
||||||
|
}
|
||||||
|
|
||||||
// Dgecon estimates the reciprocal of the condition number of the n×n matrix A
|
// Dgecon estimates the reciprocal of the condition number of the n×n matrix A
|
||||||
// given the LU decomposition of the matrix. The condition number computed may
|
// given the LU decomposition of the matrix. The condition number computed may
|
||||||
// be based on the 1-norm or the ∞-norm.
|
// be based on the 1-norm or the ∞-norm.
|
||||||
@@ -557,6 +626,53 @@ func (impl Implementation) Dorgqr(m, n, k int, a []float64, lda int, tau, work [
|
|||||||
clapack.Dorgqr(m, n, k, a, lda, tau)
|
clapack.Dorgqr(m, n, k, a, lda, tau)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Dormbr applies a multiplicative update to the matrix C based on a
|
||||||
|
// decomposition computed by Dgebrd.
|
||||||
|
//
|
||||||
|
// Dormbr computes
|
||||||
|
// Q * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.NoTrans
|
||||||
|
// C * Q if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.NoTrans
|
||||||
|
// Q^T * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.Trans
|
||||||
|
// C * Q^T if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.Trans
|
||||||
|
//
|
||||||
|
// P * C if vect == lapack.ApplyP, side == blas.Left, and trans == blas.NoTrans
|
||||||
|
// C * P if vect == lapack.ApplyP, side == blas.Left, and trans == blas.NoTrans
|
||||||
|
// P^T * C if vect == lapack.ApplyP, side == blas.Right, and trans == blas.Trans
|
||||||
|
// C * P^T if vect == lapack.ApplyP, side == blas.Right, and trans == blas.Trans
|
||||||
|
// where P and Q are the orthogonal matrices determined by Dgebrd, A = Q * B * P^T.
|
||||||
|
// See Dgebrd for the definitions of Q and P.
|
||||||
|
//
|
||||||
|
// If vect == lapack.ApplyQ, A is assumed to have been an nq×k matrix, while if
|
||||||
|
// vect == lapack.ApplyP, A is assumed to have been a k×nq matrix. nq = m if
|
||||||
|
// side == blas.Left, while nq = n if side == blas.Right.
|
||||||
|
//
|
||||||
|
// C is an m×n matrix. On exit it is updated by the multiplication listed above.
|
||||||
|
//
|
||||||
|
// Tau must have length min(nq,k), and Dormbr will panic otherwise. Tau contains
|
||||||
|
// the elementary reflectors to construct Q or P depending on the value of
|
||||||
|
// vect.
|
||||||
|
func (impl Implementation) Dormbr(vect lapack.DecompUpdate, side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) {
|
||||||
|
if side != blas.Left && side != blas.Right {
|
||||||
|
panic(badSide)
|
||||||
|
}
|
||||||
|
if trans != blas.NoTrans && trans != blas.Trans {
|
||||||
|
panic(badTrans)
|
||||||
|
}
|
||||||
|
if vect != lapack.ApplyP && vect != lapack.ApplyQ {
|
||||||
|
panic(badDecompUpdate)
|
||||||
|
}
|
||||||
|
nq := n
|
||||||
|
if side == blas.Left {
|
||||||
|
nq = m
|
||||||
|
}
|
||||||
|
if vect == lapack.ApplyQ {
|
||||||
|
checkMatrix(nq, min(nq, k), a, lda)
|
||||||
|
} else {
|
||||||
|
checkMatrix(min(nq, k), nq, a, lda)
|
||||||
|
}
|
||||||
|
clapack.Dormbr(byte(vect), side, trans, m, n, k, a, lda, tau, c, ldc)
|
||||||
|
}
|
||||||
|
|
||||||
// Dormlq multiplies the matrix C by the othogonal matrix Q defined by the
|
// Dormlq multiplies the matrix C by the othogonal matrix Q defined by the
|
||||||
// slices a and tau. A and tau are as returned from Dgelqf.
|
// slices a and tau. A and tau are as returned from Dgelqf.
|
||||||
// C = Q * C if side == blas.Left and trans == blas.NoTrans
|
// C = Q * C if side == blas.Left and trans == blas.NoTrans
|
||||||
|
@@ -13,6 +13,33 @@ import (
|
|||||||
|
|
||||||
var impl = Implementation{}
|
var impl = Implementation{}
|
||||||
|
|
||||||
|
// blockedTranslate transforms some blocked C calls to be the unblocked algorithms
|
||||||
|
// for testing, as several of the unblocked algorithms are not defined by the C
|
||||||
|
// interface.
|
||||||
|
type blockedTranslate struct {
|
||||||
|
Implementation
|
||||||
|
}
|
||||||
|
|
||||||
|
func (bl blockedTranslate) Dgebd2(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64) {
|
||||||
|
impl.Dgebrd(m, n, a, lda, d, e, tauQ, tauP, work, len(work))
|
||||||
|
}
|
||||||
|
|
||||||
|
func (bl blockedTranslate) Dorm2r(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) {
|
||||||
|
impl.Dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, len(work))
|
||||||
|
}
|
||||||
|
|
||||||
|
func (bl blockedTranslate) Dorml2(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) {
|
||||||
|
impl.Dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, len(work))
|
||||||
|
}
|
||||||
|
|
||||||
|
func (bl blockedTranslate) Dorg2r(m, n, k int, a []float64, lda int, tau, work []float64) {
|
||||||
|
impl.Dorgqr(m, n, k, a, lda, tau, work, len(work))
|
||||||
|
}
|
||||||
|
|
||||||
|
func (bl blockedTranslate) Dorgl2(m, n, k int, a []float64, lda int, tau, work []float64) {
|
||||||
|
impl.Dorglq(m, n, k, a, lda, tau, work, len(work))
|
||||||
|
}
|
||||||
|
|
||||||
func TestDlacpy(t *testing.T) {
|
func TestDlacpy(t *testing.T) {
|
||||||
testlapack.DlacpyTest(t, impl)
|
testlapack.DlacpyTest(t, impl)
|
||||||
}
|
}
|
||||||
@@ -29,6 +56,10 @@ func TestDpotrf(t *testing.T) {
|
|||||||
testlapack.DpotrfTest(t, impl)
|
testlapack.DpotrfTest(t, impl)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func TestDgebd2(t *testing.T) {
|
||||||
|
testlapack.Dgebd2Test(t, blockedTranslate{impl})
|
||||||
|
}
|
||||||
|
|
||||||
func TestDgecon(t *testing.T) {
|
func TestDgecon(t *testing.T) {
|
||||||
testlapack.DgeconTest(t, impl)
|
testlapack.DgeconTest(t, impl)
|
||||||
}
|
}
|
||||||
@@ -69,29 +100,6 @@ func TestDgetrs(t *testing.T) {
|
|||||||
testlapack.DgetrsTest(t, impl)
|
testlapack.DgetrsTest(t, impl)
|
||||||
}
|
}
|
||||||
|
|
||||||
// blockedTranslate transforms some blocked C calls to be the unblocked algorithms
|
|
||||||
// for testing, as several of the unblocked algorithms are not defined by the C
|
|
||||||
// interface.
|
|
||||||
type blockedTranslate struct {
|
|
||||||
Implementation
|
|
||||||
}
|
|
||||||
|
|
||||||
func (d blockedTranslate) Dorm2r(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) {
|
|
||||||
impl.Dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, len(work))
|
|
||||||
}
|
|
||||||
|
|
||||||
func (d blockedTranslate) Dorml2(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) {
|
|
||||||
impl.Dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, len(work))
|
|
||||||
}
|
|
||||||
|
|
||||||
func (d blockedTranslate) Dorg2r(m, n, k int, a []float64, lda int, tau, work []float64) {
|
|
||||||
impl.Dorgqr(m, n, k, a, lda, tau, work, len(work))
|
|
||||||
}
|
|
||||||
|
|
||||||
func (d blockedTranslate) Dorgl2(m, n, k int, a []float64, lda int, tau, work []float64) {
|
|
||||||
impl.Dorglq(m, n, k, a, lda, tau, work, len(work))
|
|
||||||
}
|
|
||||||
|
|
||||||
func TestDorglq(t *testing.T) {
|
func TestDorglq(t *testing.T) {
|
||||||
testlapack.DorglqTest(t, blockedTranslate{impl})
|
testlapack.DorglqTest(t, blockedTranslate{impl})
|
||||||
}
|
}
|
||||||
@@ -108,12 +116,27 @@ func TestDorg2r(t *testing.T) {
|
|||||||
testlapack.Dorg2rTest(t, blockedTranslate{impl})
|
testlapack.Dorg2rTest(t, blockedTranslate{impl})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
// Test disabled because of bug in c interface. Leaving stub for easy reproducer.
|
||||||
|
//
|
||||||
|
// Bug at: https://github.com/xianyi/OpenBLAS/issues/712
|
||||||
|
// Fix at: https://github.com/xianyi/OpenBLAS/pull/713
|
||||||
|
// Easily copiable fix: https://github.com/gonum/lapack/pull/74#issuecomment-163142140
|
||||||
|
func TestDormbr(t *testing.T) {
|
||||||
|
testlapack.DormbrTest(t, blockedTranslate{impl})
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
func TestDormqr(t *testing.T) {
|
func TestDormqr(t *testing.T) {
|
||||||
testlapack.Dorm2rTest(t, blockedTranslate{impl})
|
testlapack.Dorm2rTest(t, blockedTranslate{impl})
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
// Test disabled because of bug in c interface. Leaving stub for easy reproducer.
|
// Test disabled because of bug in c interface. Leaving stub for easy reproducer.
|
||||||
|
//
|
||||||
|
// Bug at: https://github.com/xianyi/OpenBLAS/issues/615
|
||||||
|
// Fix at: https://github.com/xianyi/OpenBLAS/pull/711
|
||||||
|
// Easily copiable fix: https://github.com/gonum/lapack/pull/74#issuecomment-163110751
|
||||||
func TestDormlq(t *testing.T) {
|
func TestDormlq(t *testing.T) {
|
||||||
testlapack.Dorml2Test(t, blockedTranslate{impl})
|
testlapack.Dorml2Test(t, blockedTranslate{impl})
|
||||||
}
|
}
|
||||||
|
136
native/dormbr.go
Normal file
136
native/dormbr.go
Normal file
@@ -0,0 +1,136 @@
|
|||||||
|
// Copyright ©2015 The gonum Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
package native
|
||||||
|
|
||||||
|
import (
|
||||||
|
"github.com/gonum/blas"
|
||||||
|
"github.com/gonum/lapack"
|
||||||
|
)
|
||||||
|
|
||||||
|
// Dormbr applies a multiplicative update to the matrix C based on a
|
||||||
|
// decomposition computed by Dgebrd.
|
||||||
|
//
|
||||||
|
// Dormbr computes
|
||||||
|
// Q * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.NoTrans
|
||||||
|
// C * Q if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.NoTrans
|
||||||
|
// Q^T * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.Trans
|
||||||
|
// C * Q^T if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.Trans
|
||||||
|
//
|
||||||
|
// P * C if vect == lapack.ApplyP, side == blas.Left, and trans == blas.NoTrans
|
||||||
|
// C * P if vect == lapack.ApplyP, side == blas.Left, and trans == blas.NoTrans
|
||||||
|
// P^T * C if vect == lapack.ApplyP, side == blas.Right, and trans == blas.Trans
|
||||||
|
// C * P^T if vect == lapack.ApplyP, side == blas.Right, and trans == blas.Trans
|
||||||
|
// where P and Q are the orthogonal matrices determined by Dgebrd, A = Q * B * P^T.
|
||||||
|
// See Dgebrd for the definitions of Q and P.
|
||||||
|
//
|
||||||
|
// If vect == lapack.ApplyQ, A is assumed to have been an nq×k matrix, while if
|
||||||
|
// vect == lapack.ApplyP, A is assumed to have been a k×nq matrix. nq = m if
|
||||||
|
// side == blas.Left, while nq = n if side == blas.Right.
|
||||||
|
//
|
||||||
|
// C is an m×n matrix. On exit it is updated by the multiplication listed above.
|
||||||
|
//
|
||||||
|
// Tau must have length min(nq,k), and Dormbr will panic otherwise. Tau contains
|
||||||
|
// the elementary reflectors to construct Q or P depending on the value of
|
||||||
|
// vect.
|
||||||
|
func (impl Implementation) Dormbr(vect lapack.DecompUpdate, side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) {
|
||||||
|
if side != blas.Left && side != blas.Right {
|
||||||
|
panic(badSide)
|
||||||
|
}
|
||||||
|
if trans != blas.NoTrans && trans != blas.Trans {
|
||||||
|
panic(badTrans)
|
||||||
|
}
|
||||||
|
if vect != lapack.ApplyP && vect != lapack.ApplyQ {
|
||||||
|
panic(badDecompUpdate)
|
||||||
|
}
|
||||||
|
nq := n
|
||||||
|
nw := m
|
||||||
|
if side == blas.Left {
|
||||||
|
nq = m
|
||||||
|
nw = n
|
||||||
|
}
|
||||||
|
if vect == lapack.ApplyQ {
|
||||||
|
checkMatrix(nq, min(nq, k), a, lda)
|
||||||
|
} else {
|
||||||
|
checkMatrix(min(nq, k), nq, a, lda)
|
||||||
|
}
|
||||||
|
|
||||||
|
applyQ := vect == lapack.ApplyQ
|
||||||
|
left := side == blas.Left
|
||||||
|
var nb int
|
||||||
|
|
||||||
|
// The current implementation does not use opts, but a future change may
|
||||||
|
// use these options so construct them.
|
||||||
|
var opts string
|
||||||
|
if side == blas.Left {
|
||||||
|
opts = "L"
|
||||||
|
} else {
|
||||||
|
opts = "R"
|
||||||
|
}
|
||||||
|
if trans == blas.Trans {
|
||||||
|
opts += "T"
|
||||||
|
} else {
|
||||||
|
opts += "N"
|
||||||
|
}
|
||||||
|
if applyQ {
|
||||||
|
if left {
|
||||||
|
nb = impl.Ilaenv(1, "DORMQR", opts, m-1, n, m-1, -1)
|
||||||
|
} else {
|
||||||
|
nb = impl.Ilaenv(1, "DORMQR", opts, m, n-1, n-1, -1)
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if left {
|
||||||
|
nb = impl.Ilaenv(1, "DORMLQ", opts, m-1, n, m-1, -1)
|
||||||
|
} else {
|
||||||
|
nb = impl.Ilaenv(1, "DORMLQ", opts, m, n-1, n-1, -1)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
lworkopt := max(1, nw) * nb
|
||||||
|
if lwork == -1 {
|
||||||
|
work[0] = float64(lworkopt)
|
||||||
|
}
|
||||||
|
if applyQ {
|
||||||
|
// Change the operation to get Q depending on the size of the initial
|
||||||
|
// matrix to Dgebrd. The size matters due to the storage location of
|
||||||
|
// the off-diagonal elements.
|
||||||
|
if nq >= k {
|
||||||
|
impl.Dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork)
|
||||||
|
} else if nq > 1 {
|
||||||
|
mi := m
|
||||||
|
ni := n - 1
|
||||||
|
i1 := 0
|
||||||
|
i2 := 1
|
||||||
|
if left {
|
||||||
|
mi = m - 1
|
||||||
|
ni = n
|
||||||
|
i1 = 1
|
||||||
|
i2 = 0
|
||||||
|
}
|
||||||
|
impl.Dormqr(side, trans, mi, ni, nq-1, a[1*lda:], lda, tau, c[i1*ldc+i2:], ldc, work, lwork)
|
||||||
|
}
|
||||||
|
return
|
||||||
|
}
|
||||||
|
transt := blas.Trans
|
||||||
|
if trans == blas.Trans {
|
||||||
|
transt = blas.NoTrans
|
||||||
|
}
|
||||||
|
// Change the operation to get P depending on the size of the initial
|
||||||
|
// matrix to Dgebrd. The size matters due to the storage location of
|
||||||
|
// the off-diagonal elements.
|
||||||
|
if nq > k {
|
||||||
|
impl.Dormlq(side, transt, m, n, k, a, lda, tau, c, ldc, work, lwork)
|
||||||
|
} else if nq > 1 {
|
||||||
|
mi := m
|
||||||
|
ni := n - 1
|
||||||
|
i1 := 0
|
||||||
|
i2 := 1
|
||||||
|
if left {
|
||||||
|
mi = m - 1
|
||||||
|
ni = n
|
||||||
|
i1 = 1
|
||||||
|
i2 = 0
|
||||||
|
}
|
||||||
|
impl.Dormlq(side, transt, mi, ni, nq-1, a[1:], lda, tau, c[i1*ldc+i2:], ldc, work, lwork)
|
||||||
|
}
|
||||||
|
}
|
@@ -15,7 +15,6 @@ import "github.com/gonum/blas"
|
|||||||
// If side == blas.Left, a is a matrix of side k×m, and if side == blas.Right
|
// If side == blas.Left, a is a matrix of side k×m, and if side == blas.Right
|
||||||
// a is of size k×n.
|
// a is of size k×n.
|
||||||
//
|
//
|
||||||
//
|
|
||||||
// Tau contains the householder factors and is of length at least k and this function will
|
// Tau contains the householder factors and is of length at least k and this function will
|
||||||
// panic otherwise.
|
// panic otherwise.
|
||||||
//
|
//
|
||||||
|
@@ -19,35 +19,36 @@ var _ lapack.Float64 = Implementation{}
|
|||||||
|
|
||||||
// This list is duplicated in lapack/cgo. Keep in sync.
|
// This list is duplicated in lapack/cgo. Keep in sync.
|
||||||
const (
|
const (
|
||||||
absIncNotOne = "lapack: increment not one or negative one"
|
absIncNotOne = "lapack: increment not one or negative one"
|
||||||
badD = "lapack: d has insufficient length"
|
badD = "lapack: d has insufficient length"
|
||||||
badDiag = "lapack: bad diag"
|
badDecompUpdate = "lapack: bad decomp update"
|
||||||
badDirect = "lapack: bad direct"
|
badDiag = "lapack: bad diag"
|
||||||
badE = "lapack: e has insufficient length"
|
badDirect = "lapack: bad direct"
|
||||||
badIpiv = "lapack: insufficient permutation length"
|
badE = "lapack: e has insufficient length"
|
||||||
badLdA = "lapack: index of a out of range"
|
badIpiv = "lapack: insufficient permutation length"
|
||||||
badNorm = "lapack: bad norm"
|
badLdA = "lapack: index of a out of range"
|
||||||
badPivot = "lapack: bad pivot"
|
badNorm = "lapack: bad norm"
|
||||||
badSide = "lapack: bad side"
|
badPivot = "lapack: bad pivot"
|
||||||
badSlice = "lapack: bad input slice length"
|
badSide = "lapack: bad side"
|
||||||
badStore = "lapack: bad store"
|
badSlice = "lapack: bad input slice length"
|
||||||
badTau = "lapack: tau has insufficient length"
|
badStore = "lapack: bad store"
|
||||||
badTauQ = "lapack: tauQ has insufficient length"
|
badTau = "lapack: tau has insufficient length"
|
||||||
badTauP = "lapack: tauP has insufficient length"
|
badTauQ = "lapack: tauQ has insufficient length"
|
||||||
badTrans = "lapack: bad trans"
|
badTauP = "lapack: tauP has insufficient length"
|
||||||
badUplo = "lapack: illegal triangle"
|
badTrans = "lapack: bad trans"
|
||||||
badWork = "lapack: insufficient working memory"
|
badUplo = "lapack: illegal triangle"
|
||||||
badWorkStride = "lapack: insufficient working array stride"
|
badWork = "lapack: insufficient working memory"
|
||||||
badZ = "lapack: insufficient z length"
|
badWorkStride = "lapack: insufficient working array stride"
|
||||||
kGTM = "lapack: k > m"
|
badZ = "lapack: insufficient z length"
|
||||||
kGTN = "lapack: k > n"
|
kGTM = "lapack: k > m"
|
||||||
kLT0 = "lapack: k < 0"
|
kGTN = "lapack: k > n"
|
||||||
mLTN = "lapack: m < n"
|
kLT0 = "lapack: k < 0"
|
||||||
negDimension = "lapack: negative matrix dimension"
|
mLTN = "lapack: m < n"
|
||||||
negZ = "lapack: negative z value"
|
negDimension = "lapack: negative matrix dimension"
|
||||||
nLT0 = "lapack: n < 0"
|
negZ = "lapack: negative z value"
|
||||||
nLTM = "lapack: n < m"
|
nLT0 = "lapack: n < 0"
|
||||||
shortWork = "lapack: working array shorter than declared"
|
nLTM = "lapack: n < m"
|
||||||
|
shortWork = "lapack: working array shorter than declared"
|
||||||
)
|
)
|
||||||
|
|
||||||
// checkMatrix verifies the parameters of a matrix input.
|
// checkMatrix verifies the parameters of a matrix input.
|
||||||
|
@@ -152,6 +152,10 @@ func TestDorgqr(t *testing.T) {
|
|||||||
testlapack.DorgqrTest(t, impl)
|
testlapack.DorgqrTest(t, impl)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func TestDormbr(t *testing.T) {
|
||||||
|
testlapack.DormbrTest(t, impl)
|
||||||
|
}
|
||||||
|
|
||||||
func TestDorml2(t *testing.T) {
|
func TestDorml2(t *testing.T) {
|
||||||
testlapack.Dorml2Test(t, impl)
|
testlapack.Dorml2Test(t, impl)
|
||||||
}
|
}
|
||||||
|
145
testlapack/dormbr.go
Normal file
145
testlapack/dormbr.go
Normal file
@@ -0,0 +1,145 @@
|
|||||||
|
// Copyright ©2015 The gonum Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
package testlapack
|
||||||
|
|
||||||
|
import (
|
||||||
|
"math/rand"
|
||||||
|
"testing"
|
||||||
|
|
||||||
|
"github.com/gonum/blas"
|
||||||
|
"github.com/gonum/blas/blas64"
|
||||||
|
"github.com/gonum/floats"
|
||||||
|
"github.com/gonum/lapack"
|
||||||
|
)
|
||||||
|
|
||||||
|
type Dormbrer interface {
|
||||||
|
Dormbr(vect lapack.DecompUpdate, side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int)
|
||||||
|
Dgebrder
|
||||||
|
}
|
||||||
|
|
||||||
|
func DormbrTest(t *testing.T, impl Dormbrer) {
|
||||||
|
bi := blas64.Implementation()
|
||||||
|
for _, vect := range []lapack.DecompUpdate{lapack.ApplyQ, lapack.ApplyP} {
|
||||||
|
for _, side := range []blas.Side{blas.Left, blas.Right} {
|
||||||
|
for _, trans := range []blas.Transpose{blas.NoTrans, blas.Trans} {
|
||||||
|
for _, test := range []struct {
|
||||||
|
m, n, k, lda, ldc int
|
||||||
|
}{
|
||||||
|
{3, 4, 5, 0, 0},
|
||||||
|
{3, 5, 4, 0, 0},
|
||||||
|
{4, 3, 5, 0, 0},
|
||||||
|
{4, 5, 3, 0, 0},
|
||||||
|
{5, 3, 4, 0, 0},
|
||||||
|
{5, 4, 3, 0, 0},
|
||||||
|
|
||||||
|
{3, 4, 5, 10, 12},
|
||||||
|
{3, 5, 4, 10, 12},
|
||||||
|
{4, 3, 5, 10, 12},
|
||||||
|
{4, 5, 3, 10, 12},
|
||||||
|
{5, 3, 4, 10, 12},
|
||||||
|
{5, 4, 3, 10, 12},
|
||||||
|
} {
|
||||||
|
m := test.m
|
||||||
|
n := test.n
|
||||||
|
k := test.k
|
||||||
|
ldc := test.ldc
|
||||||
|
if ldc == 0 {
|
||||||
|
ldc = n
|
||||||
|
}
|
||||||
|
nq := n
|
||||||
|
if side == blas.Left {
|
||||||
|
nq = m
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compute a decomposition.
|
||||||
|
var ma, na int
|
||||||
|
var a []float64
|
||||||
|
if vect == lapack.ApplyQ {
|
||||||
|
ma = nq
|
||||||
|
na = k
|
||||||
|
} else {
|
||||||
|
ma = k
|
||||||
|
na = nq
|
||||||
|
}
|
||||||
|
lda := test.lda
|
||||||
|
if lda == 0 {
|
||||||
|
lda = na
|
||||||
|
}
|
||||||
|
a = make([]float64, ma*lda)
|
||||||
|
for i := range a {
|
||||||
|
a[i] = rand.NormFloat64()
|
||||||
|
}
|
||||||
|
nTau := min(nq, k)
|
||||||
|
tauP := make([]float64, nTau)
|
||||||
|
tauQ := make([]float64, nTau)
|
||||||
|
d := make([]float64, nTau)
|
||||||
|
e := make([]float64, nTau)
|
||||||
|
lwork := -1
|
||||||
|
work := make([]float64, 1)
|
||||||
|
impl.Dgebrd(ma, na, a, lda, d, e, tauQ, tauP, work, lwork)
|
||||||
|
work = make([]float64, int(work[0]))
|
||||||
|
lwork = len(work)
|
||||||
|
|
||||||
|
impl.Dgebrd(ma, na, a, lda, d, e, tauQ, tauP, work, lwork)
|
||||||
|
|
||||||
|
// Apply and compare update.
|
||||||
|
c := make([]float64, m*ldc)
|
||||||
|
for i := range c {
|
||||||
|
c[i] = rand.NormFloat64()
|
||||||
|
}
|
||||||
|
|
||||||
|
cCopy := make([]float64, len(c))
|
||||||
|
copy(cCopy, c)
|
||||||
|
|
||||||
|
if vect == lapack.ApplyQ {
|
||||||
|
impl.Dormbr(vect, side, trans, m, n, k, a, lda, tauQ, c, ldc, work, lwork)
|
||||||
|
} else {
|
||||||
|
impl.Dormbr(vect, side, trans, m, n, k, a, lda, tauP, c, ldc, work, lwork)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check that the multiplication was correct.
|
||||||
|
cOrig := blas64.General{
|
||||||
|
Rows: m,
|
||||||
|
Cols: n,
|
||||||
|
Stride: ldc,
|
||||||
|
Data: make([]float64, len(cCopy)),
|
||||||
|
}
|
||||||
|
copy(cOrig.Data, cCopy)
|
||||||
|
cAns := blas64.General{
|
||||||
|
Rows: m,
|
||||||
|
Cols: n,
|
||||||
|
Stride: ldc,
|
||||||
|
Data: make([]float64, len(cCopy)),
|
||||||
|
}
|
||||||
|
copy(cAns.Data, cCopy)
|
||||||
|
nb := min(ma, na)
|
||||||
|
var mulMat blas64.General
|
||||||
|
if vect == lapack.ApplyQ {
|
||||||
|
mulMat = constructQPBidiagonal(lapack.ApplyQ, ma, na, nb, a, lda, tauQ)
|
||||||
|
} else {
|
||||||
|
mulMat = constructQPBidiagonal(lapack.ApplyP, ma, na, nb, a, lda, tauP)
|
||||||
|
}
|
||||||
|
|
||||||
|
mulTrans := trans
|
||||||
|
|
||||||
|
if side == blas.Left {
|
||||||
|
bi.Dgemm(mulTrans, blas.NoTrans, m, n, m, 1, mulMat.Data, mulMat.Stride, cOrig.Data, cOrig.Stride, 0, cAns.Data, cAns.Stride)
|
||||||
|
} else {
|
||||||
|
bi.Dgemm(blas.NoTrans, mulTrans, m, n, n, 1, cOrig.Data, cOrig.Stride, mulMat.Data, mulMat.Stride, 0, cAns.Data, cAns.Stride)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !floats.EqualApprox(cAns.Data, c, 1e-8) {
|
||||||
|
isApplyQ := vect == lapack.ApplyQ
|
||||||
|
isLeft := side == blas.Left
|
||||||
|
isTrans := trans == blas.Trans
|
||||||
|
|
||||||
|
t.Errorf("C mismatch. isApplyQ: %v, isLeft: %v, isTrans: %v, m = %v, n = %v, k = %v, lda = %v, ldc = %v",
|
||||||
|
isApplyQ, isLeft, isTrans, m, n, k, lda, ldc)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@@ -30,6 +30,7 @@ func Dorml2Test(t *testing.T, impl Dorml2er) {
|
|||||||
{4, 5, 3, 0, 0},
|
{4, 5, 3, 0, 0},
|
||||||
{5, 3, 4, 0, 0},
|
{5, 3, 4, 0, 0},
|
||||||
{5, 4, 3, 0, 0},
|
{5, 4, 3, 0, 0},
|
||||||
|
|
||||||
{3, 4, 5, 6, 20},
|
{3, 4, 5, 6, 20},
|
||||||
{3, 5, 4, 6, 20},
|
{3, 5, 4, 6, 20},
|
||||||
{4, 3, 5, 6, 20},
|
{4, 3, 5, 6, 20},
|
||||||
@@ -129,7 +130,9 @@ func Dorml2Test(t *testing.T, impl Dorml2er) {
|
|||||||
t.Errorf("tau changed in call")
|
t.Errorf("tau changed in call")
|
||||||
}
|
}
|
||||||
if !floats.EqualApprox(cMat.Data, c, 1e-14) {
|
if !floats.EqualApprox(cMat.Data, c, 1e-14) {
|
||||||
t.Errorf("Multiplication mismatch.\n Want %v \n got %v.", cMat.Data, c)
|
isLeft := side == blas.Left
|
||||||
|
isTrans := trans == blas.Trans
|
||||||
|
t.Errorf("Multiplication mismatch. IsLeft = %v. IsTrans = %v", isLeft, isTrans)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@@ -320,141 +320,9 @@ func constructQK(kind string, m, n, k int, a []float64, lda int, tau []float64)
|
|||||||
// the result is bidiagonal.
|
// the result is bidiagonal.
|
||||||
func checkBidiagonal(t *testing.T, m, n, nb int, a []float64, lda int, d, e, tauP, tauQ, aCopy []float64) {
|
func checkBidiagonal(t *testing.T, m, n, nb int, a []float64, lda int, d, e, tauP, tauQ, aCopy []float64) {
|
||||||
// Check the answer.
|
// Check the answer.
|
||||||
// Construct V.and U
|
// Construct V and U.
|
||||||
ldv := nb
|
qMat := constructQPBidiagonal(lapack.ApplyQ, m, n, nb, a, lda, tauQ)
|
||||||
v := blas64.General{
|
pMat := constructQPBidiagonal(lapack.ApplyP, m, n, nb, a, lda, tauP)
|
||||||
Rows: m,
|
|
||||||
Cols: nb,
|
|
||||||
Stride: ldv,
|
|
||||||
Data: make([]float64, m*ldv),
|
|
||||||
}
|
|
||||||
if m >= n {
|
|
||||||
for i := 0; i < m; i++ {
|
|
||||||
for j := 0; j <= min(nb-1, i); j++ {
|
|
||||||
if i == j {
|
|
||||||
v.Data[i*ldv+j] = 1
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
v.Data[i*ldv+j] = a[i*lda+j]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for i := 1; i < m; i++ {
|
|
||||||
for j := 0; j <= min(nb-1, i-1); j++ {
|
|
||||||
if i-1 == j {
|
|
||||||
v.Data[i*ldv+j] = 1
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
v.Data[i*ldv+j] = a[i*lda+j]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
ldu := n
|
|
||||||
u := blas64.General{
|
|
||||||
Rows: nb,
|
|
||||||
Cols: n,
|
|
||||||
Stride: ldu,
|
|
||||||
Data: make([]float64, nb*ldu),
|
|
||||||
}
|
|
||||||
if m < n {
|
|
||||||
for i := 0; i < nb; i++ {
|
|
||||||
for j := i; j < n; j++ {
|
|
||||||
if i == j {
|
|
||||||
u.Data[i*ldu+j] = 1
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
u.Data[i*ldu+j] = a[i*lda+j]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for i := 0; i < nb; i++ {
|
|
||||||
for j := i + 1; j < n; j++ {
|
|
||||||
if j-1 == i {
|
|
||||||
u.Data[i*ldu+j] = 1
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
u.Data[i*ldu+j] = a[i*lda+j]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Check the reconstruction Q^T * A * P
|
|
||||||
qMat := blas64.General{
|
|
||||||
Rows: m,
|
|
||||||
Cols: m,
|
|
||||||
Stride: m,
|
|
||||||
Data: make([]float64, m*m),
|
|
||||||
}
|
|
||||||
hMat := blas64.General{
|
|
||||||
Rows: m,
|
|
||||||
Cols: m,
|
|
||||||
Stride: m,
|
|
||||||
Data: make([]float64, m*m),
|
|
||||||
}
|
|
||||||
pMat := blas64.General{
|
|
||||||
Rows: n,
|
|
||||||
Cols: n,
|
|
||||||
Stride: n,
|
|
||||||
Data: make([]float64, n*n),
|
|
||||||
}
|
|
||||||
gMat := blas64.General{
|
|
||||||
Rows: n,
|
|
||||||
Cols: n,
|
|
||||||
Stride: n,
|
|
||||||
Data: make([]float64, n*n),
|
|
||||||
}
|
|
||||||
// set Q and P to I
|
|
||||||
for i := 0; i < m; i++ {
|
|
||||||
qMat.Data[i*qMat.Stride+i] = 1
|
|
||||||
}
|
|
||||||
for i := 0; i < n; i++ {
|
|
||||||
pMat.Data[i*pMat.Stride+i] = 1
|
|
||||||
}
|
|
||||||
|
|
||||||
for i := 0; i < nb; i++ {
|
|
||||||
qCopy := blas64.General{Rows: qMat.Rows, Cols: qMat.Cols, Stride: qMat.Stride, Data: make([]float64, len(qMat.Data))}
|
|
||||||
copy(qCopy.Data, qMat.Data)
|
|
||||||
pCopy := blas64.General{Rows: pMat.Rows, Cols: pMat.Cols, Stride: pMat.Stride, Data: make([]float64, len(pMat.Data))}
|
|
||||||
copy(pCopy.Data, pMat.Data)
|
|
||||||
|
|
||||||
// Set g and h to I
|
|
||||||
for i := 0; i < m; i++ {
|
|
||||||
for j := 0; j < m; j++ {
|
|
||||||
if i == j {
|
|
||||||
hMat.Data[i*m+j] = 1
|
|
||||||
} else {
|
|
||||||
hMat.Data[i*m+j] = 0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
for i := 0; i < n; i++ {
|
|
||||||
for j := 0; j < n; j++ {
|
|
||||||
if i == j {
|
|
||||||
gMat.Data[i*n+j] = 1
|
|
||||||
} else {
|
|
||||||
gMat.Data[i*n+j] = 0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// H -= tauQ[i] * v[i] * v[i]^t
|
|
||||||
vi := blas64.Vector{
|
|
||||||
Inc: v.Stride,
|
|
||||||
Data: v.Data[i:],
|
|
||||||
}
|
|
||||||
blas64.Ger(-tauQ[i], vi, vi, hMat)
|
|
||||||
// G -= tauP[i] * u[i] * u[i]^T
|
|
||||||
ui := blas64.Vector{
|
|
||||||
Inc: 1,
|
|
||||||
Data: u.Data[i*u.Stride:],
|
|
||||||
}
|
|
||||||
blas64.Ger(-tauP[i], ui, ui, gMat)
|
|
||||||
|
|
||||||
// Q = Q * G[1]
|
|
||||||
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qCopy, hMat, 0, qMat)
|
|
||||||
// P = P * G[i]
|
|
||||||
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, pCopy, gMat, 0, pMat)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute Q^T * A * P
|
// Compute Q^T * A * P
|
||||||
aMat := blas64.General{
|
aMat := blas64.General{
|
||||||
@@ -526,6 +394,132 @@ func checkBidiagonal(t *testing.T, m, n, nb int, a []float64, lda int, d, e, tau
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// constructQPBidiagonal constructs Q or P from the Bidiagonal decomposition
|
||||||
|
// computed by dlabrd and bgebd2.
|
||||||
|
func constructQPBidiagonal(vect lapack.DecompUpdate, m, n, nb int, a []float64, lda int, tau []float64) blas64.General {
|
||||||
|
sz := n
|
||||||
|
if vect == lapack.ApplyQ {
|
||||||
|
sz = m
|
||||||
|
}
|
||||||
|
|
||||||
|
var ldv int
|
||||||
|
var v blas64.General
|
||||||
|
if vect == lapack.ApplyQ {
|
||||||
|
ldv = nb
|
||||||
|
v = blas64.General{
|
||||||
|
Rows: m,
|
||||||
|
Cols: nb,
|
||||||
|
Stride: ldv,
|
||||||
|
Data: make([]float64, m*ldv),
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
ldv = n
|
||||||
|
v = blas64.General{
|
||||||
|
Rows: nb,
|
||||||
|
Cols: n,
|
||||||
|
Stride: ldv,
|
||||||
|
Data: make([]float64, m*ldv),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if vect == lapack.ApplyQ {
|
||||||
|
if m >= n {
|
||||||
|
for i := 0; i < m; i++ {
|
||||||
|
for j := 0; j <= min(nb-1, i); j++ {
|
||||||
|
if i == j {
|
||||||
|
v.Data[i*ldv+j] = 1
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
v.Data[i*ldv+j] = a[i*lda+j]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for i := 1; i < m; i++ {
|
||||||
|
for j := 0; j <= min(nb-1, i-1); j++ {
|
||||||
|
if i-1 == j {
|
||||||
|
v.Data[i*ldv+j] = 1
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
v.Data[i*ldv+j] = a[i*lda+j]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if m < n {
|
||||||
|
for i := 0; i < nb; i++ {
|
||||||
|
for j := i; j < n; j++ {
|
||||||
|
if i == j {
|
||||||
|
v.Data[i*ldv+j] = 1
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
v.Data[i*ldv+j] = a[i*lda+j]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for i := 0; i < nb; i++ {
|
||||||
|
for j := i + 1; j < n; j++ {
|
||||||
|
if j-1 == i {
|
||||||
|
v.Data[i*ldv+j] = 1
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
v.Data[i*ldv+j] = a[i*lda+j]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// The variable name is a computation of Q, but the algorithm is mostly the
|
||||||
|
// same for computing P (just with different data).
|
||||||
|
qMat := blas64.General{
|
||||||
|
Rows: sz,
|
||||||
|
Cols: sz,
|
||||||
|
Stride: sz,
|
||||||
|
Data: make([]float64, sz*sz),
|
||||||
|
}
|
||||||
|
hMat := blas64.General{
|
||||||
|
Rows: sz,
|
||||||
|
Cols: sz,
|
||||||
|
Stride: sz,
|
||||||
|
Data: make([]float64, sz*sz),
|
||||||
|
}
|
||||||
|
// set Q to I
|
||||||
|
for i := 0; i < sz; i++ {
|
||||||
|
qMat.Data[i*qMat.Stride+i] = 1
|
||||||
|
}
|
||||||
|
for i := 0; i < nb; i++ {
|
||||||
|
qCopy := blas64.General{Rows: qMat.Rows, Cols: qMat.Cols, Stride: qMat.Stride, Data: make([]float64, len(qMat.Data))}
|
||||||
|
copy(qCopy.Data, qMat.Data)
|
||||||
|
|
||||||
|
// Set g and h to I
|
||||||
|
for i := 0; i < sz; i++ {
|
||||||
|
for j := 0; j < sz; j++ {
|
||||||
|
if i == j {
|
||||||
|
hMat.Data[i*sz+j] = 1
|
||||||
|
} else {
|
||||||
|
hMat.Data[i*sz+j] = 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
var vi blas64.Vector
|
||||||
|
// H -= tauQ[i] * v[i] * v[i]^t
|
||||||
|
if vect == lapack.ApplyQ {
|
||||||
|
vi = blas64.Vector{
|
||||||
|
Inc: v.Stride,
|
||||||
|
Data: v.Data[i:],
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
vi = blas64.Vector{
|
||||||
|
Inc: 1,
|
||||||
|
Data: v.Data[i*v.Stride:],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
blas64.Ger(-tau[i], vi, vi, hMat)
|
||||||
|
// Q = Q * G[1]
|
||||||
|
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qCopy, hMat, 0, qMat)
|
||||||
|
}
|
||||||
|
return qMat
|
||||||
|
}
|
||||||
|
|
||||||
// printRowise prints the matrix with one row per line. This is useful for debugging.
|
// printRowise prints the matrix with one row per line. This is useful for debugging.
|
||||||
// If beyond is true, it prints beyond the final column to lda. If false, only
|
// If beyond is true, it prints beyond the final column to lda. If false, only
|
||||||
// the columns are printed.
|
// the columns are printed.
|
||||||
|
Reference in New Issue
Block a user