Add Dormbr and test

This commit is contained in:
btracey
2015-12-08 00:13:49 -07:00
parent 6343a7fd25
commit 69fe9cef45
9 changed files with 639 additions and 218 deletions

View File

@@ -13,35 +13,36 @@ import (
// Copied from lapack/native. Keep in sync. // Copied from lapack/native. Keep in sync.
const ( const (
absIncNotOne = "lapack: increment not one or negative one" absIncNotOne = "lapack: increment not one or negative one"
badD = "lapack: d has insufficient length" badD = "lapack: d has insufficient length"
badDiag = "lapack: bad diag" badDecompUpdate = "lapack: bad decomp update"
badDirect = "lapack: bad direct" badDiag = "lapack: bad diag"
badE = "lapack: e has insufficient length" badDirect = "lapack: bad direct"
badIpiv = "lapack: insufficient permutation length" badE = "lapack: e has insufficient length"
badLdA = "lapack: index of a out of range" badIpiv = "lapack: insufficient permutation length"
badNorm = "lapack: bad norm" badLdA = "lapack: index of a out of range"
badPivot = "lapack: bad pivot" badNorm = "lapack: bad norm"
badSide = "lapack: bad side" badPivot = "lapack: bad pivot"
badSlice = "lapack: bad input slice length" badSide = "lapack: bad side"
badStore = "lapack: bad store" badSlice = "lapack: bad input slice length"
badTau = "lapack: tau has insufficient length" badStore = "lapack: bad store"
badTauQ = "lapack: tauQ has insufficient length" badTau = "lapack: tau has insufficient length"
badTauP = "lapack: tauP has insufficient length" badTauQ = "lapack: tauQ has insufficient length"
badTrans = "lapack: bad trans" badTauP = "lapack: tauP has insufficient length"
badUplo = "lapack: illegal triangle" badTrans = "lapack: bad trans"
badWork = "lapack: insufficient working memory" badUplo = "lapack: illegal triangle"
badWorkStride = "lapack: insufficient working array stride" badWork = "lapack: insufficient working memory"
badZ = "lapack: insufficient z length" badWorkStride = "lapack: insufficient working array stride"
kGTM = "lapack: k > m" badZ = "lapack: insufficient z length"
kGTN = "lapack: k > n" kGTM = "lapack: k > m"
kLT0 = "lapack: k < 0" kGTN = "lapack: k > n"
mLTN = "lapack: m < n" kLT0 = "lapack: k < 0"
negDimension = "lapack: negative matrix dimension" mLTN = "lapack: m < n"
negZ = "lapack: negative z value" negDimension = "lapack: negative matrix dimension"
nLT0 = "lapack: n < 0" negZ = "lapack: negative z value"
nLTM = "lapack: n < m" nLT0 = "lapack: n < 0"
shortWork = "lapack: working array shorter than declared" nLTM = "lapack: n < m"
shortWork = "lapack: working array shorter than declared"
) )
func min(m, n int) int { func min(m, n int) int {
@@ -170,6 +171,74 @@ func (impl Implementation) Dpotrf(ul blas.Uplo, n int, a []float64, lda int) (ok
return clapack.Dpotrf(ul, n, a, lda) return clapack.Dpotrf(ul, n, a, lda)
} }
// Dgebrd reduces a general m×n matrix A to upper or lower bidiagonal form B by
// an orthogonal transformation:
// Q^T * A * P = B.
// The diagonal elements of B are stored in d and the off-diagonal elements are
// stored in e. These are additionally stored along the diagonal of A and the
// off-diagonal of A. If m >= n B is an upper-bidiagonal matrix, and if m < n B
// is a lower-bidiagonal matrix.
//
// The remaining elements of A store the data needed to construct Q and P.
// The matrices Q and P are products of elementary reflectors
// Q = H_1 * H_2 * ... * H_nb
// P = G_1 * G_2 * ... * G_nb
// where
// H_i = I - tauQ[i] * v_i * v_i^T
// G_i = I - tauP[i] * u_i * u_i^T
//
// As an example, on exit the entries of A when m = 6, and n = 5
// ( d e u1 u1 u1 )
// ( v1 d e u2 u2 )
// ( v1 v2 d e u3 )
// ( v1 v2 v3 d e )
// ( v1 v2 v3 v4 d )
// ( v1 v2 v3 v4 v5 )
// and when m = 5, n = 6
// ( d u1 u1 u1 u1 u1 )
// ( e d u2 u2 u2 u2 )
// ( v1 e d u3 u3 u3 )
// ( v1 v2 e d u4 u4 )
// ( v1 v2 v3 e d u5 )
//
// d, tauQ, and tauP must all have length at least min(m,n), and e must have
// length min(m,n) - 1.
//
// Work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= max(m,n) and this function will panic otherwise.
// The C interface does not support providing temporary storage. To provide compatibility
// with native, lwork == -1 will not run Dgeqrf but will instead write the minimum
// work necessary to work[0]. If len(work) < lwork, Dgbrd will panic.
func (impl Implementation) Dgebrd(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64, lwork int) {
checkMatrix(m, n, a, lda)
minmn := min(m, n)
if len(d) < minmn {
panic(badD)
}
if len(e) < minmn-1 {
panic(badE)
}
if len(tauQ) < minmn {
panic(badTauQ)
}
if len(tauP) < minmn {
panic(badTauP)
}
ws := max(m, n)
if lwork == -1 {
work[0] = float64(ws)
return
}
if lwork < ws {
panic(badWork)
}
if len(work) < lwork {
panic(badWork)
}
clapack.Dgebrd(m, n, a, lda, d, e, tauQ, tauP)
}
// Dgecon estimates the reciprocal of the condition number of the n×n matrix A // Dgecon estimates the reciprocal of the condition number of the n×n matrix A
// given the LU decomposition of the matrix. The condition number computed may // given the LU decomposition of the matrix. The condition number computed may
// be based on the 1-norm or the ∞-norm. // be based on the 1-norm or the ∞-norm.
@@ -557,6 +626,53 @@ func (impl Implementation) Dorgqr(m, n, k int, a []float64, lda int, tau, work [
clapack.Dorgqr(m, n, k, a, lda, tau) clapack.Dorgqr(m, n, k, a, lda, tau)
} }
// Dormbr applies a multiplicative update to the matrix C based on a
// decomposition computed by Dgebrd.
//
// Dormbr computes
// Q * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.NoTrans
// C * Q if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.NoTrans
// Q^T * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.Trans
// C * Q^T if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.Trans
//
// P * C if vect == lapack.ApplyP, side == blas.Left, and trans == blas.NoTrans
// C * P if vect == lapack.ApplyP, side == blas.Left, and trans == blas.NoTrans
// P^T * C if vect == lapack.ApplyP, side == blas.Right, and trans == blas.Trans
// C * P^T if vect == lapack.ApplyP, side == blas.Right, and trans == blas.Trans
// where P and Q are the orthogonal matrices determined by Dgebrd, A = Q * B * P^T.
// See Dgebrd for the definitions of Q and P.
//
// If vect == lapack.ApplyQ, A is assumed to have been an nq×k matrix, while if
// vect == lapack.ApplyP, A is assumed to have been a k×nq matrix. nq = m if
// side == blas.Left, while nq = n if side == blas.Right.
//
// C is an m×n matrix. On exit it is updated by the multiplication listed above.
//
// Tau must have length min(nq,k), and Dormbr will panic otherwise. Tau contains
// the elementary reflectors to construct Q or P depending on the value of
// vect.
func (impl Implementation) Dormbr(vect lapack.DecompUpdate, side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) {
if side != blas.Left && side != blas.Right {
panic(badSide)
}
if trans != blas.NoTrans && trans != blas.Trans {
panic(badTrans)
}
if vect != lapack.ApplyP && vect != lapack.ApplyQ {
panic(badDecompUpdate)
}
nq := n
if side == blas.Left {
nq = m
}
if vect == lapack.ApplyQ {
checkMatrix(nq, min(nq, k), a, lda)
} else {
checkMatrix(min(nq, k), nq, a, lda)
}
clapack.Dormbr(byte(vect), side, trans, m, n, k, a, lda, tau, c, ldc)
}
// Dormlq multiplies the matrix C by the othogonal matrix Q defined by the // Dormlq multiplies the matrix C by the othogonal matrix Q defined by the
// slices a and tau. A and tau are as returned from Dgelqf. // slices a and tau. A and tau are as returned from Dgelqf.
// C = Q * C if side == blas.Left and trans == blas.NoTrans // C = Q * C if side == blas.Left and trans == blas.NoTrans

View File

@@ -13,6 +13,33 @@ import (
var impl = Implementation{} var impl = Implementation{}
// blockedTranslate transforms some blocked C calls to be the unblocked algorithms
// for testing, as several of the unblocked algorithms are not defined by the C
// interface.
type blockedTranslate struct {
Implementation
}
func (bl blockedTranslate) Dgebd2(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64) {
impl.Dgebrd(m, n, a, lda, d, e, tauQ, tauP, work, len(work))
}
func (bl blockedTranslate) Dorm2r(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) {
impl.Dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, len(work))
}
func (bl blockedTranslate) Dorml2(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) {
impl.Dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, len(work))
}
func (bl blockedTranslate) Dorg2r(m, n, k int, a []float64, lda int, tau, work []float64) {
impl.Dorgqr(m, n, k, a, lda, tau, work, len(work))
}
func (bl blockedTranslate) Dorgl2(m, n, k int, a []float64, lda int, tau, work []float64) {
impl.Dorglq(m, n, k, a, lda, tau, work, len(work))
}
func TestDlacpy(t *testing.T) { func TestDlacpy(t *testing.T) {
testlapack.DlacpyTest(t, impl) testlapack.DlacpyTest(t, impl)
} }
@@ -29,6 +56,10 @@ func TestDpotrf(t *testing.T) {
testlapack.DpotrfTest(t, impl) testlapack.DpotrfTest(t, impl)
} }
func TestDgebd2(t *testing.T) {
testlapack.Dgebd2Test(t, blockedTranslate{impl})
}
func TestDgecon(t *testing.T) { func TestDgecon(t *testing.T) {
testlapack.DgeconTest(t, impl) testlapack.DgeconTest(t, impl)
} }
@@ -69,29 +100,6 @@ func TestDgetrs(t *testing.T) {
testlapack.DgetrsTest(t, impl) testlapack.DgetrsTest(t, impl)
} }
// blockedTranslate transforms some blocked C calls to be the unblocked algorithms
// for testing, as several of the unblocked algorithms are not defined by the C
// interface.
type blockedTranslate struct {
Implementation
}
func (d blockedTranslate) Dorm2r(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) {
impl.Dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, len(work))
}
func (d blockedTranslate) Dorml2(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) {
impl.Dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, len(work))
}
func (d blockedTranslate) Dorg2r(m, n, k int, a []float64, lda int, tau, work []float64) {
impl.Dorgqr(m, n, k, a, lda, tau, work, len(work))
}
func (d blockedTranslate) Dorgl2(m, n, k int, a []float64, lda int, tau, work []float64) {
impl.Dorglq(m, n, k, a, lda, tau, work, len(work))
}
func TestDorglq(t *testing.T) { func TestDorglq(t *testing.T) {
testlapack.DorglqTest(t, blockedTranslate{impl}) testlapack.DorglqTest(t, blockedTranslate{impl})
} }
@@ -108,12 +116,27 @@ func TestDorg2r(t *testing.T) {
testlapack.Dorg2rTest(t, blockedTranslate{impl}) testlapack.Dorg2rTest(t, blockedTranslate{impl})
} }
/*
// Test disabled because of bug in c interface. Leaving stub for easy reproducer.
//
// Bug at: https://github.com/xianyi/OpenBLAS/issues/712
// Fix at: https://github.com/xianyi/OpenBLAS/pull/713
// Easily copiable fix: https://github.com/gonum/lapack/pull/74#issuecomment-163142140
func TestDormbr(t *testing.T) {
testlapack.DormbrTest(t, blockedTranslate{impl})
}
*/
func TestDormqr(t *testing.T) { func TestDormqr(t *testing.T) {
testlapack.Dorm2rTest(t, blockedTranslate{impl}) testlapack.Dorm2rTest(t, blockedTranslate{impl})
} }
/* /*
// Test disabled because of bug in c interface. Leaving stub for easy reproducer. // Test disabled because of bug in c interface. Leaving stub for easy reproducer.
//
// Bug at: https://github.com/xianyi/OpenBLAS/issues/615
// Fix at: https://github.com/xianyi/OpenBLAS/pull/711
// Easily copiable fix: https://github.com/gonum/lapack/pull/74#issuecomment-163110751
func TestDormlq(t *testing.T) { func TestDormlq(t *testing.T) {
testlapack.Dorml2Test(t, blockedTranslate{impl}) testlapack.Dorml2Test(t, blockedTranslate{impl})
} }

136
native/dormbr.go Normal file
View File

@@ -0,0 +1,136 @@
// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"github.com/gonum/blas"
"github.com/gonum/lapack"
)
// Dormbr applies a multiplicative update to the matrix C based on a
// decomposition computed by Dgebrd.
//
// Dormbr computes
// Q * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.NoTrans
// C * Q if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.NoTrans
// Q^T * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.Trans
// C * Q^T if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.Trans
//
// P * C if vect == lapack.ApplyP, side == blas.Left, and trans == blas.NoTrans
// C * P if vect == lapack.ApplyP, side == blas.Left, and trans == blas.NoTrans
// P^T * C if vect == lapack.ApplyP, side == blas.Right, and trans == blas.Trans
// C * P^T if vect == lapack.ApplyP, side == blas.Right, and trans == blas.Trans
// where P and Q are the orthogonal matrices determined by Dgebrd, A = Q * B * P^T.
// See Dgebrd for the definitions of Q and P.
//
// If vect == lapack.ApplyQ, A is assumed to have been an nq×k matrix, while if
// vect == lapack.ApplyP, A is assumed to have been a k×nq matrix. nq = m if
// side == blas.Left, while nq = n if side == blas.Right.
//
// C is an m×n matrix. On exit it is updated by the multiplication listed above.
//
// Tau must have length min(nq,k), and Dormbr will panic otherwise. Tau contains
// the elementary reflectors to construct Q or P depending on the value of
// vect.
func (impl Implementation) Dormbr(vect lapack.DecompUpdate, side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) {
if side != blas.Left && side != blas.Right {
panic(badSide)
}
if trans != blas.NoTrans && trans != blas.Trans {
panic(badTrans)
}
if vect != lapack.ApplyP && vect != lapack.ApplyQ {
panic(badDecompUpdate)
}
nq := n
nw := m
if side == blas.Left {
nq = m
nw = n
}
if vect == lapack.ApplyQ {
checkMatrix(nq, min(nq, k), a, lda)
} else {
checkMatrix(min(nq, k), nq, a, lda)
}
applyQ := vect == lapack.ApplyQ
left := side == blas.Left
var nb int
// The current implementation does not use opts, but a future change may
// use these options so construct them.
var opts string
if side == blas.Left {
opts = "L"
} else {
opts = "R"
}
if trans == blas.Trans {
opts += "T"
} else {
opts += "N"
}
if applyQ {
if left {
nb = impl.Ilaenv(1, "DORMQR", opts, m-1, n, m-1, -1)
} else {
nb = impl.Ilaenv(1, "DORMQR", opts, m, n-1, n-1, -1)
}
} else {
if left {
nb = impl.Ilaenv(1, "DORMLQ", opts, m-1, n, m-1, -1)
} else {
nb = impl.Ilaenv(1, "DORMLQ", opts, m, n-1, n-1, -1)
}
}
lworkopt := max(1, nw) * nb
if lwork == -1 {
work[0] = float64(lworkopt)
}
if applyQ {
// Change the operation to get Q depending on the size of the initial
// matrix to Dgebrd. The size matters due to the storage location of
// the off-diagonal elements.
if nq >= k {
impl.Dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork)
} else if nq > 1 {
mi := m
ni := n - 1
i1 := 0
i2 := 1
if left {
mi = m - 1
ni = n
i1 = 1
i2 = 0
}
impl.Dormqr(side, trans, mi, ni, nq-1, a[1*lda:], lda, tau, c[i1*ldc+i2:], ldc, work, lwork)
}
return
}
transt := blas.Trans
if trans == blas.Trans {
transt = blas.NoTrans
}
// Change the operation to get P depending on the size of the initial
// matrix to Dgebrd. The size matters due to the storage location of
// the off-diagonal elements.
if nq > k {
impl.Dormlq(side, transt, m, n, k, a, lda, tau, c, ldc, work, lwork)
} else if nq > 1 {
mi := m
ni := n - 1
i1 := 0
i2 := 1
if left {
mi = m - 1
ni = n
i1 = 1
i2 = 0
}
impl.Dormlq(side, transt, mi, ni, nq-1, a[1:], lda, tau, c[i1*ldc+i2:], ldc, work, lwork)
}
}

View File

@@ -15,7 +15,6 @@ import "github.com/gonum/blas"
// If side == blas.Left, a is a matrix of side k×m, and if side == blas.Right // If side == blas.Left, a is a matrix of side k×m, and if side == blas.Right
// a is of size k×n. // a is of size k×n.
// //
//
// Tau contains the householder factors and is of length at least k and this function will // Tau contains the householder factors and is of length at least k and this function will
// panic otherwise. // panic otherwise.
// //

View File

@@ -19,35 +19,36 @@ var _ lapack.Float64 = Implementation{}
// This list is duplicated in lapack/cgo. Keep in sync. // This list is duplicated in lapack/cgo. Keep in sync.
const ( const (
absIncNotOne = "lapack: increment not one or negative one" absIncNotOne = "lapack: increment not one or negative one"
badD = "lapack: d has insufficient length" badD = "lapack: d has insufficient length"
badDiag = "lapack: bad diag" badDecompUpdate = "lapack: bad decomp update"
badDirect = "lapack: bad direct" badDiag = "lapack: bad diag"
badE = "lapack: e has insufficient length" badDirect = "lapack: bad direct"
badIpiv = "lapack: insufficient permutation length" badE = "lapack: e has insufficient length"
badLdA = "lapack: index of a out of range" badIpiv = "lapack: insufficient permutation length"
badNorm = "lapack: bad norm" badLdA = "lapack: index of a out of range"
badPivot = "lapack: bad pivot" badNorm = "lapack: bad norm"
badSide = "lapack: bad side" badPivot = "lapack: bad pivot"
badSlice = "lapack: bad input slice length" badSide = "lapack: bad side"
badStore = "lapack: bad store" badSlice = "lapack: bad input slice length"
badTau = "lapack: tau has insufficient length" badStore = "lapack: bad store"
badTauQ = "lapack: tauQ has insufficient length" badTau = "lapack: tau has insufficient length"
badTauP = "lapack: tauP has insufficient length" badTauQ = "lapack: tauQ has insufficient length"
badTrans = "lapack: bad trans" badTauP = "lapack: tauP has insufficient length"
badUplo = "lapack: illegal triangle" badTrans = "lapack: bad trans"
badWork = "lapack: insufficient working memory" badUplo = "lapack: illegal triangle"
badWorkStride = "lapack: insufficient working array stride" badWork = "lapack: insufficient working memory"
badZ = "lapack: insufficient z length" badWorkStride = "lapack: insufficient working array stride"
kGTM = "lapack: k > m" badZ = "lapack: insufficient z length"
kGTN = "lapack: k > n" kGTM = "lapack: k > m"
kLT0 = "lapack: k < 0" kGTN = "lapack: k > n"
mLTN = "lapack: m < n" kLT0 = "lapack: k < 0"
negDimension = "lapack: negative matrix dimension" mLTN = "lapack: m < n"
negZ = "lapack: negative z value" negDimension = "lapack: negative matrix dimension"
nLT0 = "lapack: n < 0" negZ = "lapack: negative z value"
nLTM = "lapack: n < m" nLT0 = "lapack: n < 0"
shortWork = "lapack: working array shorter than declared" nLTM = "lapack: n < m"
shortWork = "lapack: working array shorter than declared"
) )
// checkMatrix verifies the parameters of a matrix input. // checkMatrix verifies the parameters of a matrix input.

View File

@@ -152,6 +152,10 @@ func TestDorgqr(t *testing.T) {
testlapack.DorgqrTest(t, impl) testlapack.DorgqrTest(t, impl)
} }
func TestDormbr(t *testing.T) {
testlapack.DormbrTest(t, impl)
}
func TestDorml2(t *testing.T) { func TestDorml2(t *testing.T) {
testlapack.Dorml2Test(t, impl) testlapack.Dorml2Test(t, impl)
} }

145
testlapack/dormbr.go Normal file
View File

@@ -0,0 +1,145 @@
// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"math/rand"
"testing"
"github.com/gonum/blas"
"github.com/gonum/blas/blas64"
"github.com/gonum/floats"
"github.com/gonum/lapack"
)
type Dormbrer interface {
Dormbr(vect lapack.DecompUpdate, side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int)
Dgebrder
}
func DormbrTest(t *testing.T, impl Dormbrer) {
bi := blas64.Implementation()
for _, vect := range []lapack.DecompUpdate{lapack.ApplyQ, lapack.ApplyP} {
for _, side := range []blas.Side{blas.Left, blas.Right} {
for _, trans := range []blas.Transpose{blas.NoTrans, blas.Trans} {
for _, test := range []struct {
m, n, k, lda, ldc int
}{
{3, 4, 5, 0, 0},
{3, 5, 4, 0, 0},
{4, 3, 5, 0, 0},
{4, 5, 3, 0, 0},
{5, 3, 4, 0, 0},
{5, 4, 3, 0, 0},
{3, 4, 5, 10, 12},
{3, 5, 4, 10, 12},
{4, 3, 5, 10, 12},
{4, 5, 3, 10, 12},
{5, 3, 4, 10, 12},
{5, 4, 3, 10, 12},
} {
m := test.m
n := test.n
k := test.k
ldc := test.ldc
if ldc == 0 {
ldc = n
}
nq := n
if side == blas.Left {
nq = m
}
// Compute a decomposition.
var ma, na int
var a []float64
if vect == lapack.ApplyQ {
ma = nq
na = k
} else {
ma = k
na = nq
}
lda := test.lda
if lda == 0 {
lda = na
}
a = make([]float64, ma*lda)
for i := range a {
a[i] = rand.NormFloat64()
}
nTau := min(nq, k)
tauP := make([]float64, nTau)
tauQ := make([]float64, nTau)
d := make([]float64, nTau)
e := make([]float64, nTau)
lwork := -1
work := make([]float64, 1)
impl.Dgebrd(ma, na, a, lda, d, e, tauQ, tauP, work, lwork)
work = make([]float64, int(work[0]))
lwork = len(work)
impl.Dgebrd(ma, na, a, lda, d, e, tauQ, tauP, work, lwork)
// Apply and compare update.
c := make([]float64, m*ldc)
for i := range c {
c[i] = rand.NormFloat64()
}
cCopy := make([]float64, len(c))
copy(cCopy, c)
if vect == lapack.ApplyQ {
impl.Dormbr(vect, side, trans, m, n, k, a, lda, tauQ, c, ldc, work, lwork)
} else {
impl.Dormbr(vect, side, trans, m, n, k, a, lda, tauP, c, ldc, work, lwork)
}
// Check that the multiplication was correct.
cOrig := blas64.General{
Rows: m,
Cols: n,
Stride: ldc,
Data: make([]float64, len(cCopy)),
}
copy(cOrig.Data, cCopy)
cAns := blas64.General{
Rows: m,
Cols: n,
Stride: ldc,
Data: make([]float64, len(cCopy)),
}
copy(cAns.Data, cCopy)
nb := min(ma, na)
var mulMat blas64.General
if vect == lapack.ApplyQ {
mulMat = constructQPBidiagonal(lapack.ApplyQ, ma, na, nb, a, lda, tauQ)
} else {
mulMat = constructQPBidiagonal(lapack.ApplyP, ma, na, nb, a, lda, tauP)
}
mulTrans := trans
if side == blas.Left {
bi.Dgemm(mulTrans, blas.NoTrans, m, n, m, 1, mulMat.Data, mulMat.Stride, cOrig.Data, cOrig.Stride, 0, cAns.Data, cAns.Stride)
} else {
bi.Dgemm(blas.NoTrans, mulTrans, m, n, n, 1, cOrig.Data, cOrig.Stride, mulMat.Data, mulMat.Stride, 0, cAns.Data, cAns.Stride)
}
if !floats.EqualApprox(cAns.Data, c, 1e-8) {
isApplyQ := vect == lapack.ApplyQ
isLeft := side == blas.Left
isTrans := trans == blas.Trans
t.Errorf("C mismatch. isApplyQ: %v, isLeft: %v, isTrans: %v, m = %v, n = %v, k = %v, lda = %v, ldc = %v",
isApplyQ, isLeft, isTrans, m, n, k, lda, ldc)
}
}
}
}
}
}

View File

@@ -30,6 +30,7 @@ func Dorml2Test(t *testing.T, impl Dorml2er) {
{4, 5, 3, 0, 0}, {4, 5, 3, 0, 0},
{5, 3, 4, 0, 0}, {5, 3, 4, 0, 0},
{5, 4, 3, 0, 0}, {5, 4, 3, 0, 0},
{3, 4, 5, 6, 20}, {3, 4, 5, 6, 20},
{3, 5, 4, 6, 20}, {3, 5, 4, 6, 20},
{4, 3, 5, 6, 20}, {4, 3, 5, 6, 20},
@@ -129,7 +130,9 @@ func Dorml2Test(t *testing.T, impl Dorml2er) {
t.Errorf("tau changed in call") t.Errorf("tau changed in call")
} }
if !floats.EqualApprox(cMat.Data, c, 1e-14) { if !floats.EqualApprox(cMat.Data, c, 1e-14) {
t.Errorf("Multiplication mismatch.\n Want %v \n got %v.", cMat.Data, c) isLeft := side == blas.Left
isTrans := trans == blas.Trans
t.Errorf("Multiplication mismatch. IsLeft = %v. IsTrans = %v", isLeft, isTrans)
} }
} }
} }

View File

@@ -320,141 +320,9 @@ func constructQK(kind string, m, n, k int, a []float64, lda int, tau []float64)
// the result is bidiagonal. // the result is bidiagonal.
func checkBidiagonal(t *testing.T, m, n, nb int, a []float64, lda int, d, e, tauP, tauQ, aCopy []float64) { func checkBidiagonal(t *testing.T, m, n, nb int, a []float64, lda int, d, e, tauP, tauQ, aCopy []float64) {
// Check the answer. // Check the answer.
// Construct V.and U // Construct V and U.
ldv := nb qMat := constructQPBidiagonal(lapack.ApplyQ, m, n, nb, a, lda, tauQ)
v := blas64.General{ pMat := constructQPBidiagonal(lapack.ApplyP, m, n, nb, a, lda, tauP)
Rows: m,
Cols: nb,
Stride: ldv,
Data: make([]float64, m*ldv),
}
if m >= n {
for i := 0; i < m; i++ {
for j := 0; j <= min(nb-1, i); j++ {
if i == j {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
} else {
for i := 1; i < m; i++ {
for j := 0; j <= min(nb-1, i-1); j++ {
if i-1 == j {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
}
ldu := n
u := blas64.General{
Rows: nb,
Cols: n,
Stride: ldu,
Data: make([]float64, nb*ldu),
}
if m < n {
for i := 0; i < nb; i++ {
for j := i; j < n; j++ {
if i == j {
u.Data[i*ldu+j] = 1
continue
}
u.Data[i*ldu+j] = a[i*lda+j]
}
}
} else {
for i := 0; i < nb; i++ {
for j := i + 1; j < n; j++ {
if j-1 == i {
u.Data[i*ldu+j] = 1
continue
}
u.Data[i*ldu+j] = a[i*lda+j]
}
}
}
// Check the reconstruction Q^T * A * P
qMat := blas64.General{
Rows: m,
Cols: m,
Stride: m,
Data: make([]float64, m*m),
}
hMat := blas64.General{
Rows: m,
Cols: m,
Stride: m,
Data: make([]float64, m*m),
}
pMat := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
gMat := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
// set Q and P to I
for i := 0; i < m; i++ {
qMat.Data[i*qMat.Stride+i] = 1
}
for i := 0; i < n; i++ {
pMat.Data[i*pMat.Stride+i] = 1
}
for i := 0; i < nb; i++ {
qCopy := blas64.General{Rows: qMat.Rows, Cols: qMat.Cols, Stride: qMat.Stride, Data: make([]float64, len(qMat.Data))}
copy(qCopy.Data, qMat.Data)
pCopy := blas64.General{Rows: pMat.Rows, Cols: pMat.Cols, Stride: pMat.Stride, Data: make([]float64, len(pMat.Data))}
copy(pCopy.Data, pMat.Data)
// Set g and h to I
for i := 0; i < m; i++ {
for j := 0; j < m; j++ {
if i == j {
hMat.Data[i*m+j] = 1
} else {
hMat.Data[i*m+j] = 0
}
}
}
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
if i == j {
gMat.Data[i*n+j] = 1
} else {
gMat.Data[i*n+j] = 0
}
}
}
// H -= tauQ[i] * v[i] * v[i]^t
vi := blas64.Vector{
Inc: v.Stride,
Data: v.Data[i:],
}
blas64.Ger(-tauQ[i], vi, vi, hMat)
// G -= tauP[i] * u[i] * u[i]^T
ui := blas64.Vector{
Inc: 1,
Data: u.Data[i*u.Stride:],
}
blas64.Ger(-tauP[i], ui, ui, gMat)
// Q = Q * G[1]
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qCopy, hMat, 0, qMat)
// P = P * G[i]
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, pCopy, gMat, 0, pMat)
}
// Compute Q^T * A * P // Compute Q^T * A * P
aMat := blas64.General{ aMat := blas64.General{
@@ -526,6 +394,132 @@ func checkBidiagonal(t *testing.T, m, n, nb int, a []float64, lda int, d, e, tau
} }
} }
// constructQPBidiagonal constructs Q or P from the Bidiagonal decomposition
// computed by dlabrd and bgebd2.
func constructQPBidiagonal(vect lapack.DecompUpdate, m, n, nb int, a []float64, lda int, tau []float64) blas64.General {
sz := n
if vect == lapack.ApplyQ {
sz = m
}
var ldv int
var v blas64.General
if vect == lapack.ApplyQ {
ldv = nb
v = blas64.General{
Rows: m,
Cols: nb,
Stride: ldv,
Data: make([]float64, m*ldv),
}
} else {
ldv = n
v = blas64.General{
Rows: nb,
Cols: n,
Stride: ldv,
Data: make([]float64, m*ldv),
}
}
if vect == lapack.ApplyQ {
if m >= n {
for i := 0; i < m; i++ {
for j := 0; j <= min(nb-1, i); j++ {
if i == j {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
} else {
for i := 1; i < m; i++ {
for j := 0; j <= min(nb-1, i-1); j++ {
if i-1 == j {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
}
} else {
if m < n {
for i := 0; i < nb; i++ {
for j := i; j < n; j++ {
if i == j {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
} else {
for i := 0; i < nb; i++ {
for j := i + 1; j < n; j++ {
if j-1 == i {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
}
}
// The variable name is a computation of Q, but the algorithm is mostly the
// same for computing P (just with different data).
qMat := blas64.General{
Rows: sz,
Cols: sz,
Stride: sz,
Data: make([]float64, sz*sz),
}
hMat := blas64.General{
Rows: sz,
Cols: sz,
Stride: sz,
Data: make([]float64, sz*sz),
}
// set Q to I
for i := 0; i < sz; i++ {
qMat.Data[i*qMat.Stride+i] = 1
}
for i := 0; i < nb; i++ {
qCopy := blas64.General{Rows: qMat.Rows, Cols: qMat.Cols, Stride: qMat.Stride, Data: make([]float64, len(qMat.Data))}
copy(qCopy.Data, qMat.Data)
// Set g and h to I
for i := 0; i < sz; i++ {
for j := 0; j < sz; j++ {
if i == j {
hMat.Data[i*sz+j] = 1
} else {
hMat.Data[i*sz+j] = 0
}
}
}
var vi blas64.Vector
// H -= tauQ[i] * v[i] * v[i]^t
if vect == lapack.ApplyQ {
vi = blas64.Vector{
Inc: v.Stride,
Data: v.Data[i:],
}
} else {
vi = blas64.Vector{
Inc: 1,
Data: v.Data[i*v.Stride:],
}
}
blas64.Ger(-tau[i], vi, vi, hMat)
// Q = Q * G[1]
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qCopy, hMat, 0, qMat)
}
return qMat
}
// printRowise prints the matrix with one row per line. This is useful for debugging. // printRowise prints the matrix with one row per line. This is useful for debugging.
// If beyond is true, it prints beyond the final column to lda. If false, only // If beyond is true, it prints beyond the final column to lda. If false, only
// the columns are printed. // the columns are printed.