all: run gofmt and generate all packages

Changes made in dsp/fourier/internal/fftpack break the formatting used
there, so these are reverted. There will be complaints in CI.

[git-generate]
gofmt -w .
go generate gonum.org/v1/gonum/blas
go generate gonum.org/v1/gonum/blas/gonum
go generate gonum.org/v1/gonum/unit
go generate gonum.org/v1/gonum/unit/constant
go generate gonum.org/v1/gonum/graph/formats/dot
go generate gonum.org/v1/gonum/graph/formats/rdf
go generate gonum.org/v1/gonum/stat/card

git checkout -- dsp/fourier/internal/fftpack
This commit is contained in:
Dan Kortschak
2022-08-05 20:57:59 +09:30
parent fee5019b48
commit 5f0141ca4c
308 changed files with 5004 additions and 3064 deletions

View File

@@ -13,9 +13,11 @@ import (
)
// A123 is the non-symmetric singular matrix
// [ 1 2 3 ]
// A = [ 4 5 6 ]
// [ 7 8 9 ]
//
// [ 1 2 3 ]
// A = [ 4 5 6 ]
// [ 7 8 9 ]
//
// It has three distinct real eigenvalues.
type A123 struct{}
@@ -89,13 +91,17 @@ func (AntisymRandom) Eigenvalues() []complex128 {
}
// Circulant is a generally non-symmetric matrix given by
// A[i,j] = 1 + (j-i+n)%n.
//
// A[i,j] = 1 + (j-i+n)%n.
//
// For example, for n=5,
// [ 1 2 3 4 5 ]
// [ 5 1 2 3 4 ]
// A = [ 4 5 1 2 3 ]
// [ 3 4 5 1 2 ]
// [ 2 3 4 5 1 ]
//
// [ 1 2 3 4 5 ]
// [ 5 1 2 3 4 ]
// A = [ 4 5 1 2 3 ]
// [ 3 4 5 1 2 ]
// [ 2 3 4 5 1 ]
//
// It has real and complex eigenvalues, some possibly repeated.
type Circulant int
@@ -126,15 +132,19 @@ func (c Circulant) Eigenvalues() []complex128 {
}
// Clement is a generally non-symmetric matrix given by
// A[i,j] = i+1 if j == i+1,
// = n-i if j == i-1,
// = 0 otherwise.
//
// A[i,j] = i+1 if j == i+1,
// = n-i if j == i-1,
// = 0 otherwise.
//
// For example, for n=5,
// [ . 1 . . . ]
// [ 4 . 2 . . ]
// A = [ . 3 . 3 . ]
// [ . . 2 . 4 ]
// [ . . . 1 . ]
//
// [ . 1 . . . ]
// [ 4 . 2 . . ]
// A = [ . 3 . 3 . ]
// [ . . 2 . 4 ]
// [ . . . 1 . ]
//
// It has n distinct real eigenvalues.
type Clement int
@@ -162,14 +172,18 @@ func (c Clement) Eigenvalues() []complex128 {
}
// Creation is a singular non-symmetric matrix given by
// A[i,j] = i if j == i-1,
// = 0 otherwise.
//
// A[i,j] = i if j == i-1,
// = 0 otherwise.
//
// For example, for n=5,
// [ . . . . . ]
// [ 1 . . . . ]
// A = [ . 2 . . . ]
// [ . . 3 . . ]
// [ . . . 4 . ]
//
// [ . . . . . ]
// [ 1 . . . . ]
// A = [ . 2 . . . ]
// [ . . 3 . . ]
// [ . . . 4 . ]
//
// Zero is its only eigenvalue.
type Creation int
@@ -187,14 +201,18 @@ func (c Creation) Eigenvalues() []complex128 {
}
// Diagonal is a diagonal matrix given by
// A[i,j] = i+1 if i == j,
// = 0 otherwise.
//
// A[i,j] = i+1 if i == j,
// = 0 otherwise.
//
// For example, for n=5,
// [ 1 . . . . ]
// [ . 2 . . . ]
// A = [ . . 3 . . ]
// [ . . . 4 . ]
// [ . . . . 5 ]
//
// [ 1 . . . . ]
// [ . 2 . . . ]
// A = [ . . 3 . . ]
// [ . . . 4 . ]
// [ . . . . 5 ]
//
// It has n real eigenvalues {1,...,n}.
type Diagonal int
@@ -217,14 +235,18 @@ func (d Diagonal) Eigenvalues() []complex128 {
}
// Downshift is a non-singular upper Hessenberg matrix given by
// A[i,j] = 1 if (i-j+n)%n == 1,
// = 0 otherwise.
//
// A[i,j] = 1 if (i-j+n)%n == 1,
// = 0 otherwise.
//
// For example, for n=5,
// [ . . . . 1 ]
// [ 1 . . . . ]
// A = [ . 1 . . . ]
// [ . . 1 . . ]
// [ . . . 1 . ]
//
// [ . . . . 1 ]
// [ 1 . . . . ]
// A = [ . 1 . . . ]
// [ . . 1 . . ]
// [ . . . 1 . ]
//
// Its eigenvalues are the complex roots of unity.
type Downshift int
@@ -244,11 +266,12 @@ func (d Downshift) Eigenvalues() []complex128 {
// Fibonacci is an upper Hessenberg matrix with 3 distinct real eigenvalues. For
// example, for n=5,
// [ . 1 . . . ]
// [ 1 1 . . . ]
// A = [ . 1 1 . . ]
// [ . . 1 1 . ]
// [ . . . 1 1 ]
//
// [ . 1 . . . ]
// [ 1 1 . . . ]
// A = [ . 1 1 . . ]
// [ . . 1 1 . ]
// [ . . . 1 1 ]
type Fibonacci int
func (f Fibonacci) Matrix() blas64.General {
@@ -281,11 +304,12 @@ func (f Fibonacci) Eigenvalues() []complex128 {
// Gear is a singular non-symmetric matrix with real eigenvalues. For example,
// for n=5,
// [ . 1 . . 1 ]
// [ 1 . 1 . . ]
// A = [ . 1 . 1 . ]
// [ . . 1 . 1 ]
// [-1 . . 1 . ]
//
// [ . 1 . . 1 ]
// [ 1 . 1 . . ]
// A = [ . 1 . 1 . ]
// [ . . 1 . 1 ]
// [-1 . . 1 . ]
type Gear int
func (g Gear) Matrix() blas64.General {
@@ -336,15 +360,19 @@ func (g Gear) Eigenvalues() []complex128 {
}
// Grcar is an upper Hessenberg matrix given by
// A[i,j] = -1 if i == j+1,
// = 1 if i <= j and j <= i+k,
// = 0 otherwise.
//
// A[i,j] = -1 if i == j+1,
// = 1 if i <= j and j <= i+k,
// = 0 otherwise.
//
// For example, for n=5 and k=2,
// [ 1 1 1 . . ]
// [ -1 1 1 1 . ]
// A = [ . -1 1 1 1 ]
// [ . . -1 1 1 ]
// [ . . . -1 1 ]
//
// [ 1 1 1 . . ]
// [ -1 1 1 1 . ]
// A = [ . -1 1 1 1 ]
// [ . . -1 1 1 ]
// [ . . . -1 1 ]
//
// The matrix has sensitive eigenvalues but they are not given explicitly.
type Grcar struct {
N int
@@ -370,10 +398,12 @@ func (Grcar) Eigenvalues() []complex128 {
}
// Hanowa is a non-symmetric non-singular matrix of even order given by
// A[i,j] = alpha if i == j,
// = -i-1 if i < n/2 and j == i + n/2,
// = i+1-n/2 if i >= n/2 and j == i - n/2,
// = 0 otherwise.
//
// A[i,j] = alpha if i == j,
// = -i-1 if i < n/2 and j == i + n/2,
// = i+1-n/2 if i >= n/2 and j == i - n/2,
// = 0 otherwise.
//
// The matrix has complex eigenvalues.
type Hanowa struct {
N int // Order of the matrix, must be even.
@@ -412,15 +442,19 @@ func (h Hanowa) Eigenvalues() []complex128 {
}
// Lesp is a tridiagonal, generally non-symmetric matrix given by
// A[i,j] = -2*i-5 if i == j,
// = 1/(i+1) if i == j-1,
// = j+1 if i == j+1.
//
// A[i,j] = -2*i-5 if i == j,
// = 1/(i+1) if i == j-1,
// = j+1 if i == j+1.
//
// For example, for n=5,
// [ -5 2 . . . ]
// [ 1/2 -7 3 . . ]
// A = [ . 1/3 -9 4 . ]
// [ . . 1/4 -11 5 ]
// [ . . . 1/5 -13 ].
//
// [ -5 2 . . . ]
// [ 1/2 -7 3 . . ]
// A = [ . 1/3 -9 4 . ]
// [ . . 1/4 -11 5 ]
// [ . . . 1/5 -13 ].
//
// The matrix has sensitive eigenvalues but they are not given explicitly.
type Lesp int
@@ -444,10 +478,12 @@ func (Lesp) Eigenvalues() []complex128 {
}
// Rutis is the 4×4 non-symmetric matrix
// [ 4 -5 0 3 ]
// A = [ 0 4 -3 -5 ]
// [ 5 -3 4 0 ]
// [ 3 0 5 4 ]
//
// [ 4 -5 0 3 ]
// A = [ 0 4 -3 -5 ]
// [ 5 -3 4 0 ]
// [ 3 0 5 4 ]
//
// It has two distinct real eigenvalues and a pair of complex eigenvalues.
type Rutis struct{}
@@ -470,9 +506,11 @@ func (Rutis) Eigenvalues() []complex128 {
}
// Tris is a tridiagonal matrix given by
// A[i,j] = x if i == j-1,
// = y if i == j,
// = z if i == j+1.
//
// A[i,j] = x if i == j-1,
// = y if i == j,
// = z if i == j+1.
//
// If x*z is negative, the matrix has complex eigenvalues.
type Tris struct {
N int