mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00
lapack/testlapack: rework Dlasq1Test
This commit is contained in:

committed by
Vladimír Chalupecký

parent
1d69e6a999
commit
55b691b581
@@ -5,83 +5,122 @@
|
||||
package testlapack
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"sort"
|
||||
"testing"
|
||||
|
||||
"golang.org/x/exp/rand"
|
||||
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/blas/blas64"
|
||||
"gonum.org/v1/gonum/floats"
|
||||
)
|
||||
|
||||
type Dlasq1er interface {
|
||||
Dlasq1(n int, d, e, work []float64) int
|
||||
Dgetrfer
|
||||
|
||||
Dgebrd(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64, lwork int)
|
||||
}
|
||||
|
||||
func Dlasq1Test(t *testing.T, impl Dlasq1er) {
|
||||
const tol = 1e-14
|
||||
rnd := rand.New(rand.NewSource(1))
|
||||
bi := blas64.Implementation()
|
||||
// TODO(btracey): Increase the size of this test when we have a more numerically
|
||||
// stable way to test the singular values.
|
||||
for _, n := range []int{1, 2, 5, 8} {
|
||||
work := make([]float64, 4*n)
|
||||
d := make([]float64, n)
|
||||
e := make([]float64, n-1)
|
||||
for cas := 0; cas < 1; cas++ {
|
||||
for _, n := range []int{0, 1, 2, 3, 4, 5, 8, 10, 30, 50} {
|
||||
for typ := 0; typ <= 7; typ++ {
|
||||
name := fmt.Sprintf("n=%v,typ=%v", n, typ)
|
||||
|
||||
// Generate a diagonal matrix D with positive entries.
|
||||
d := make([]float64, n)
|
||||
switch typ {
|
||||
case 0:
|
||||
// The zero matrix.
|
||||
case 1:
|
||||
// The identity matrix.
|
||||
for i := range d {
|
||||
d[i] = 1
|
||||
}
|
||||
case 2:
|
||||
// A diagonal matrix with evenly spaced entries 1, ..., eps.
|
||||
for i := 0; i < n; i++ {
|
||||
if i == 0 {
|
||||
d[0] = 1
|
||||
} else {
|
||||
d[i] = 1 - (1-dlamchE)*float64(i)/float64(n-1)
|
||||
}
|
||||
}
|
||||
case 3, 4, 5:
|
||||
// A diagonal matrix with geometrically spaced entries 1, ..., eps.
|
||||
for i := 0; i < n; i++ {
|
||||
if i == 0 {
|
||||
d[0] = 1
|
||||
} else {
|
||||
d[i] = math.Pow(dlamchE, float64(i)/float64(n-1))
|
||||
}
|
||||
}
|
||||
switch typ {
|
||||
case 4:
|
||||
// Multiply by SQRT(overflow threshold).
|
||||
floats.Scale(math.Sqrt(1/dlamchS), d)
|
||||
case 5:
|
||||
// Multiply by SQRT(underflow threshold).
|
||||
floats.Scale(math.Sqrt(dlamchS), d)
|
||||
}
|
||||
case 6:
|
||||
// A diagonal matrix with "clustered" entries 1, eps, ..., eps.
|
||||
for i := range d {
|
||||
if i == 0 {
|
||||
d[i] = 1
|
||||
} else {
|
||||
d[i] = dlamchE
|
||||
}
|
||||
}
|
||||
case 7:
|
||||
// Diagonal matrix with random entries.
|
||||
for i := range d {
|
||||
d[i] = math.Abs(rnd.NormFloat64())
|
||||
}
|
||||
}
|
||||
|
||||
dWant := make([]float64, n)
|
||||
copy(dWant, d)
|
||||
sort.Sort(sort.Reverse(sort.Float64Slice(dWant)))
|
||||
|
||||
// Allocate work slice to the maximum length needed below.
|
||||
work := make([]float64, max(1, 4*n))
|
||||
|
||||
// Generate an n×n matrix A by pre- and post-multiplying D with
|
||||
// random orthogonal matrices:
|
||||
// A = U*D*V.
|
||||
lda := max(1, n)
|
||||
a := make([]float64, n*lda)
|
||||
Dlagge(n, n, 0, 0, d, a, lda, rnd, work)
|
||||
|
||||
// Reduce A to bidiagonal form B represented by the diagonal d and
|
||||
// off-diagonal e.
|
||||
tauQ := make([]float64, n)
|
||||
tauP := make([]float64, n)
|
||||
e := make([]float64, max(0, n-1))
|
||||
impl.Dgebrd(n, n, a, lda, d, e, tauQ, tauP, work, len(work))
|
||||
|
||||
// Compute the singular values of B.
|
||||
for i := range work {
|
||||
work[i] = rnd.Float64()
|
||||
work[i] = math.NaN()
|
||||
}
|
||||
for i := range d {
|
||||
d[i] = rnd.NormFloat64() + 10
|
||||
}
|
||||
for i := range e {
|
||||
e[i] = rnd.NormFloat64()
|
||||
}
|
||||
ldm := n
|
||||
m := make([]float64, n*ldm)
|
||||
// Set up the matrix
|
||||
for i := 0; i < n; i++ {
|
||||
m[i*ldm+i] = d[i]
|
||||
if i != n-1 {
|
||||
m[(i+1)*ldm+i] = e[i]
|
||||
}
|
||||
info := impl.Dlasq1(n, d, e, work)
|
||||
if info != 0 {
|
||||
t.Fatalf("%v: Dlasq1 returned non-zero info=%v", name, info)
|
||||
}
|
||||
|
||||
ldmm := n
|
||||
mm := make([]float64, n*ldmm)
|
||||
bi.Dgemm(blas.Trans, blas.NoTrans, n, n, n, 1, m, ldm, m, ldm, 0, mm, ldmm)
|
||||
if n == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
impl.Dlasq1(n, d, e, work)
|
||||
if !sort.IsSorted(sort.Reverse(sort.Float64Slice(d))) {
|
||||
t.Errorf("%v: singular values not sorted", name)
|
||||
}
|
||||
|
||||
// Check that they are singular values. The
|
||||
// singular values are the square roots of the
|
||||
// eigenvalues of Xᵀ * X
|
||||
mmCopy := make([]float64, len(mm))
|
||||
copy(mmCopy, mm)
|
||||
ipiv := make([]int, n)
|
||||
for elem, sv := range d[0:n] {
|
||||
copy(mm, mmCopy)
|
||||
lambda := sv * sv
|
||||
for i := 0; i < n; i++ {
|
||||
mm[i*ldm+i] -= lambda
|
||||
}
|
||||
|
||||
// Compute LU.
|
||||
ok := impl.Dgetrf(n, n, mm, ldmm, ipiv)
|
||||
if !ok {
|
||||
// Definitely singular.
|
||||
continue
|
||||
}
|
||||
// Compute determinant
|
||||
var logdet float64
|
||||
for i := 0; i < n; i++ {
|
||||
v := mm[i*ldm+i]
|
||||
logdet += math.Log(math.Abs(v))
|
||||
}
|
||||
if math.Exp(logdet) > 2 {
|
||||
t.Errorf("Incorrect singular value. n = %d, cas = %d, elem = %d, det = %v", n, cas, elem, math.Exp(logdet))
|
||||
}
|
||||
diff := floats.Distance(d, dWant, math.Inf(1))
|
||||
if diff > tol*floats.Max(dWant) {
|
||||
t.Errorf("%v: unexpected result; diff=%v", name, diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user