Add a new interp package with interpolation algorithms: constant, piecewise linear and piecewise constant

This commit is contained in:
Roman Werpachowski
2020-07-06 21:40:06 +01:00
committed by GitHub
parent 42752487ce
commit 551d33a2ee
4 changed files with 371 additions and 0 deletions

3
interp/README.md Normal file
View File

@@ -0,0 +1,3 @@
# Gonum interp [![GoDoc](https://godoc.org/gonum.org/v1/gonum/interp?status.svg)](https://godoc.org/gonum.org/v1/gonum/interp)
Package interp is an interpolation package for the Go language.

9
interp/doc.go Normal file
View File

@@ -0,0 +1,9 @@
// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package interp implements 1-dimensional algorithms for interpolating values.
// Outside of the interpolation interval determined by the interpolated data,
// the returned value is undefined (but we do our best to return something
// reasonable).
package interp // import "gonum.org/v1/gonum/interp"

166
interp/interp.go Normal file
View File

@@ -0,0 +1,166 @@
// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package interp
import (
"errors"
"sort"
)
const (
differentLengths = "interp: xs and ys have different lengths"
tooFewPoints = "interp: too few points for interpolation"
xsNotStrictlyIncreasing = "interp: xs values not strictly increasing"
)
// Predictor predicts the value of a function. It handles both
// interpolation and extrapolation.
type Predictor interface {
// Predict returns the predicted value at x.
Predict(x float64) float64
}
// Fitter fits a predictor to data.
type Fitter interface {
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
// It returns an error if len(xs) < 2, elements of xs are not strictly
// increasing or len(xs) != len(ys).
Fit(xs, ys []float64) error
}
// FittablePredictor is a Predictor which can fit itself to data.
type FittablePredictor interface {
Fitter
Predictor
}
// Constant predicts a constant value.
type Constant float64
// Predict returns the predicted value at x.
func (c Constant) Predict(x float64) float64 {
return float64(c)
}
// Function predicts by evaluating itself.
type Function func(float64) float64
// Predict returns the predicted value at x by evaluating fn(x).
func (fn Function) Predict(x float64) float64 {
return fn(x)
}
// PiecewiseLinear is a piecewise linear 1-dimensional interpolator.
type PiecewiseLinear struct {
// Interpolated X values.
xs []float64
// Interpolated Y data values, same len as ys.
ys []float64
// Slopes of Y between neighbouring X values. len(slopes) + 1 == len(xs) == len(ys).
slopes []float64
}
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
// It returns an error if len(xs) < 2, elements of xs are not strictly
// increasing or len(xs) != len(ys).
func (pl *PiecewiseLinear) Fit(xs, ys []float64) error {
n := len(xs)
if len(ys) != n {
return errors.New(differentLengths)
}
if n < 2 {
return errors.New(tooFewPoints)
}
m := n - 1
pl.slopes = make([]float64, m)
for i := 0; i < m; i++ {
dx := xs[i+1] - xs[i]
if dx <= 0 {
return errors.New(xsNotStrictlyIncreasing)
}
pl.slopes[i] = (ys[i+1] - ys[i]) / dx
}
pl.xs = xs
pl.ys = ys
return nil
}
// Predict returns the interpolation value at x.
func (pl PiecewiseLinear) Predict(x float64) float64 {
i := findSegment(pl.xs, x)
if i < 0 {
return pl.ys[0]
}
// i < len(pci.xs)
xI := pl.xs[i]
if x == xI {
return pl.ys[i]
}
n := len(pl.xs)
if i == n-1 {
// x > li.xs[i]
return pl.ys[n-1]
}
// i < len(i1d.xs) - 1
return pl.ys[i] + pl.slopes[i]*(x-xI)
}
// PiecewiseConstant is a left-continous, piecewise constant
// 1-dimensional interpolator.
type PiecewiseConstant struct {
// Interpolated X values.
xs []float64
// Interpolated Y data values, same len as ys.
ys []float64
}
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
// It returns an error if len(xs) < 2, elements of xs are not strictly
// increasing or len(xs) != len(ys).
func (pc *PiecewiseConstant) Fit(xs, ys []float64) error {
n := len(xs)
if len(ys) != n {
return errors.New(differentLengths)
}
if n < 2 {
return errors.New(tooFewPoints)
}
for i := 1; i < n; i++ {
if xs[i] <= xs[i-1] {
return errors.New(xsNotStrictlyIncreasing)
}
}
pc.xs = xs
pc.ys = ys
return nil
}
// Predict returns the interpolation value at x.
func (pc PiecewiseConstant) Predict(x float64) float64 {
i := findSegment(pc.xs, x)
if i < 0 {
return pc.ys[0]
}
// i < len(pci.xs)
if x == pc.xs[i] {
return pc.ys[i]
}
n := len(pc.xs)
if i == n-1 {
// x > pci.xs[i]
return pc.ys[n-1]
}
return pc.ys[i+1]
}
// findSegment returns 0 <= i < len(xs) such that xs[i] <= x < xs[i + 1], where xs[len(xs)]
// is assumed to be +Inf. If no such i is found, it returns -1. It assumes that len(xs) >= 2
// without checking.
func findSegment(xs []float64, x float64) int {
return sort.Search(len(xs), func(i int) bool { return xs[i] > x }) - 1
}

193
interp/interp_test.go Normal file
View File

@@ -0,0 +1,193 @@
// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package interp
import (
"fmt"
"math"
"testing"
)
func TestConstant(t *testing.T) {
t.Parallel()
const value = 42.0
c := Constant(value)
xs := []float64{math.Inf(-1), -11, 0.4, 1e9, math.Inf(1)}
for _, x := range xs {
y := c.Predict(x)
if y != value {
t.Errorf("unexpected Predict(%g) value: got: %g want: %g", x, y, value)
}
}
}
func TestFunction(t *testing.T) {
fn := func(x float64) float64 { return math.Exp(x) }
predictor := Function(fn)
xs := []float64{-100, -1, 0, 0.5, 15}
for _, x := range xs {
want := fn(x)
got := predictor.Predict(x)
if got != want {
t.Errorf("unexpected Predict(%g) value: got: %g want: %g", x, got, want)
}
}
}
func TestFindSegment(t *testing.T) {
t.Parallel()
xs := []float64{0, 1, 2}
testXs := []float64{-0.6, 0, 0.3, 1, 1.5, 2, 2.8}
expectedIs := []int{-1, 0, 0, 1, 1, 2, 2}
for k, x := range testXs {
i := findSegment(xs, x)
if i != expectedIs[k] {
t.Errorf("unexpected value of findSegment(xs, %g): got %d want: %d", x, i, expectedIs[k])
}
}
}
func BenchmarkFindSegment(b *testing.B) {
xs := []float64{0, 1.5, 3, 4.5, 6, 7.5, 9, 12, 13.5, 16.5}
for i := 0; i < b.N; i++ {
findSegment(xs, 0)
findSegment(xs, 16.5)
findSegment(xs, -1)
findSegment(xs, 8.25)
findSegment(xs, 4.125)
findSegment(xs, 13.6)
findSegment(xs, 23.6)
findSegment(xs, 13.5)
findSegment(xs, 6)
findSegment(xs, 4.5)
}
}
// testPiecewiseInterpolatorCreation tests common functionality in creating piecewise interpolators.
func testPiecewiseInterpolatorCreation(t *testing.T, fp FittablePredictor) {
type errorParams struct {
xs []float64
ys []float64
expectedMessage string
}
errorParamSets := []errorParams{
{[]float64{0, 1, 2}, []float64{-0.5, 1.5}, "xs and ys have different lengths"},
{[]float64{0.3}, []float64{0}, "too few points for interpolation"},
{[]float64{0.3, 0.3}, []float64{0, 0}, "xs values not strictly increasing"},
{[]float64{0.3, -0.3}, []float64{0, 0}, "xs values not strictly increasing"},
}
for _, params := range errorParamSets {
err := fp.Fit(params.xs, params.ys)
expectedMessage := fmt.Sprintf("interp: %s", params.expectedMessage)
if err == nil || err.Error() != expectedMessage {
t.Errorf("expected error for xs: %v and ys: %v with message: %s", params.xs, params.ys, expectedMessage)
}
}
}
func TestPiecewiseLinearFit(t *testing.T) {
t.Parallel()
testPiecewiseInterpolatorCreation(t, &PiecewiseLinear{})
}
// testInterpolatorPredict tests evaluation of a interpolator.
func testInterpolatorPredict(t *testing.T, p Predictor, xs []float64, expectedYs []float64, tol float64) {
for i, x := range xs {
y := p.Predict(x)
yErr := math.Abs(y - expectedYs[i])
if yErr > tol {
if tol == 0 {
t.Errorf("unexpected Predict(%g) value: got: %g want: %g", x, y, expectedYs[i])
} else {
t.Errorf("unexpected Predict(%g) value: got: %g want: %g with tolerance: %g", x, y, expectedYs[i], tol)
}
}
}
}
func TestPiecewiseLinearPredict(t *testing.T) {
t.Parallel()
xs := []float64{0, 1, 2}
ys := []float64{-0.5, 1.5, 1}
var pl PiecewiseLinear
err := pl.Fit(xs, ys)
if err != nil {
t.Errorf("Fit error: %s", err.Error())
}
testInterpolatorPredict(t, pl, xs, ys, 0)
testInterpolatorPredict(t, pl, []float64{-0.4, 2.6}, []float64{-0.5, 1}, 0)
testInterpolatorPredict(t, pl, []float64{0.1, 0.5, 0.8, 1.2}, []float64{-0.3, 0.5, 1.1, 1.4}, 1e-15)
}
func BenchmarkNewPiecewiseLinear(b *testing.B) {
xs := []float64{0, 1.5, 3, 4.5, 6, 7.5, 9, 12, 13.5, 16.5}
ys := []float64{0, 1, 2, 2.5, 2, 1.5, 4, 10, -2, 2}
var pl PiecewiseLinear
for i := 0; i < b.N; i++ {
_ = pl.Fit(xs, ys)
}
}
func BenchmarkPiecewiseLinearPredict(b *testing.B) {
xs := []float64{0, 1.5, 3, 4.5, 6, 7.5, 9, 12, 13.5, 16.5}
ys := []float64{0, 1, 2, 2.5, 2, 1.5, 4, 10, -2, 2}
var pl PiecewiseLinear
_ = pl.Fit(xs, ys)
for i := 0; i < b.N; i++ {
pl.Predict(0)
pl.Predict(16.5)
pl.Predict(-2)
pl.Predict(4)
pl.Predict(7.32)
pl.Predict(9.0001)
pl.Predict(1.4)
pl.Predict(1.6)
pl.Predict(30)
pl.Predict(13.5)
pl.Predict(4.5)
}
}
func TestNewPiecewiseConstant(t *testing.T) {
var pc PiecewiseConstant
testPiecewiseInterpolatorCreation(t, &pc)
}
func benchmarkPiecewiseConstantPredict(b *testing.B) {
xs := []float64{0, 1.5, 3, 4.5, 6, 7.5, 9, 12, 13.5, 16.5}
ys := []float64{0, 1, 2, 2.5, 2, 1.5, 4, 10, -2, 2}
var pc PiecewiseConstant
_ = pc.Fit(xs, ys)
for i := 0; i < b.N; i++ {
pc.Predict(0)
pc.Predict(16.5)
pc.Predict(4)
pc.Predict(7.32)
pc.Predict(9.0001)
pc.Predict(1.4)
pc.Predict(1.6)
pc.Predict(13.5)
pc.Predict(4.5)
}
}
func BenchmarkPiecewiseConstantPredict(b *testing.B) {
benchmarkPiecewiseConstantPredict(b)
}
func TestPiecewiseConstantPredict(t *testing.T) {
t.Parallel()
xs := []float64{0, 1, 2}
ys := []float64{-0.5, 1.5, 1}
var pc PiecewiseConstant
err := pc.Fit(xs, ys)
if err != nil {
t.Errorf("Fit error: %s", err.Error())
}
testInterpolatorPredict(t, pc, xs, ys, 0)
testXs := []float64{-0.9, 0.1, 0.5, 0.8, 1.2, 3.1}
leftYs := []float64{-0.5, 1.5, 1.5, 1.5, 1, 1}
testInterpolatorPredict(t, pc, testXs, leftYs, 0)
}