mirror of
https://github.com/gonum/gonum.git
synced 2025-10-13 02:43:59 +08:00
dsp/window: new package for functions to control spectral leakage of FFT
This commit is contained in:
325
dsp/window/window_complex.go
Normal file
325
dsp/window/window_complex.go
Normal file
@@ -0,0 +1,325 @@
|
||||
// Copyright ©2020 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package window
|
||||
|
||||
import "math"
|
||||
|
||||
// Rectangular modifies seq in place by the Rectangular window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Rectangular_window and
|
||||
// https://www.recordingblogs.com/wiki/rectangular-window for details.
|
||||
//
|
||||
// The rectangular window has the lowest width of the main lobe and largest
|
||||
// level of the side lobes. The result corresponds to a selection of
|
||||
// limited length sequence of values without any modification.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = 1,
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 2, ΔF_0.5 = 0.89, K = 1, ɣ_max = -13, β = 0.
|
||||
func RectangularComplex(seq []complex128) []complex128 {
|
||||
return seq
|
||||
}
|
||||
|
||||
// SineComplex modifies seq in place by the Sine window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Sine_window and
|
||||
// https://www.recordingblogs.com/wiki/sine-window for details.
|
||||
//
|
||||
// Sine window is a high-resolution window.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = sin(π*k/(N-1)),
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 3, ΔF_0.5 = 1.23, K = 1.5, ɣ_max = -23, β = -3.93.
|
||||
func SineComplex(seq []complex128) []complex128 {
|
||||
k := math.Pi / float64(len(seq)-1)
|
||||
for i := range seq {
|
||||
seq[i] *= complex(math.Sin(k*float64(i)), 0)
|
||||
}
|
||||
return seq
|
||||
}
|
||||
|
||||
// LanczosComplex modifies seq in place by the Lanczos window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Lanczos_window and
|
||||
// https://www.recordingblogs.com/wiki/lanczos-window for details.
|
||||
//
|
||||
// The Lanczos window is a high-resolution window.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = sinc(2*k/(N-1) - 1),
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 3.24, ΔF_0.5 = 1.3, K = 1.62, ɣ_max = -26.4, β = -4.6.
|
||||
func LanczosComplex(seq []complex128) []complex128 {
|
||||
k := 2 / float64(len(seq)-1)
|
||||
for i := range seq {
|
||||
x := math.Pi * (k*float64(i) - 1)
|
||||
if x == 0 {
|
||||
// Avoid NaN.
|
||||
continue
|
||||
}
|
||||
seq[i] *= complex(math.Sin(x)/x, 0)
|
||||
}
|
||||
return seq
|
||||
}
|
||||
|
||||
// TriangularComplex modifies seq in place by the Triangular window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Triangular_window and
|
||||
// https://www.recordingblogs.com/wiki/triangular-window for details.
|
||||
//
|
||||
// The Triangular window is a high-resolution window.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = 1 - |k/A -1|, A=(N-1)/2,
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 4, ΔF_0.5 = 1.33, K = 2, ɣ_max = -26.5, β = -6.
|
||||
func TriangularComplex(seq []complex128) []complex128 {
|
||||
a := float64(len(seq)-1) / 2
|
||||
for i := range seq {
|
||||
seq[i] *= complex(1-math.Abs(float64(i)/a-1), 0)
|
||||
}
|
||||
return seq
|
||||
}
|
||||
|
||||
// HannComplex modifies seq in place by the Hann window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
|
||||
// and https://www.recordingblogs.com/wiki/hann-window for details.
|
||||
//
|
||||
// The Hann window is a high-resolution window.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = 0.5*(1 - cos(2*π*k/(N-1))),
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 4, ΔF_0.5 = 1.5, K = 2, ɣ_max = -31.5, β = -6.
|
||||
func HannComplex(seq []complex128) []complex128 {
|
||||
k := 2 * math.Pi / float64(len(seq)-1)
|
||||
for i := range seq {
|
||||
seq[i] *= complex(0.5*(1-math.Cos(k*float64(i))), 0)
|
||||
}
|
||||
return seq
|
||||
}
|
||||
|
||||
// BartlettHannComplex modifies seq in place by the Bartlett-Hann window and returns result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Bartlett%E2%80%93Hann_window
|
||||
// and https://www.recordingblogs.com/wiki/bartlett-hann-window for details.
|
||||
//
|
||||
// The Bartlett-Hann window is a high-resolution window.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = 0.62 - 0.48*|k/(N-1)-0.5| - 0.38*cos(2*π*k/(N-1)),
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 4, ΔF_0.5 = 1.45, K = 2, ɣ_max = -35.9, β = -6.
|
||||
func BartlettHannComplex(seq []complex128) []complex128 {
|
||||
const (
|
||||
a0 = 0.62
|
||||
a1 = 0.48
|
||||
a2 = 0.38
|
||||
)
|
||||
|
||||
k := 2 * math.Pi / float64(len(seq)-1)
|
||||
for i := range seq {
|
||||
seq[i] *= complex(a0-a1*math.Abs(float64(i)/float64(len(seq)-1)-0.5)-a2*math.Cos(k*float64(i)), 0)
|
||||
}
|
||||
return seq
|
||||
}
|
||||
|
||||
// HammingComplex modifies seq in place by the Hamming window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
|
||||
// and https://www.recordingblogs.com/wiki/hamming-window for details.
|
||||
//
|
||||
// The Hamming window is a high-resolution window. Among K=2 windows it has
|
||||
// the highest ɣ_max.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = 25/46 - 21/46 * cos(2*π*k/(N-1)),
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 4, ΔF_0.5 = 1.33, K = 2, ɣ_max = -42, β = -5.37.
|
||||
func HammingComplex(seq []complex128) []complex128 {
|
||||
const (
|
||||
a0 = 25.0 / 46.0
|
||||
a1 = 1 - a0
|
||||
)
|
||||
|
||||
k := 2 * math.Pi / float64(len(seq)-1)
|
||||
for i := range seq {
|
||||
seq[i] *= complex(a0-a1*math.Cos(k*float64(i)), 0)
|
||||
}
|
||||
return seq
|
||||
}
|
||||
|
||||
// BlackmanComplex modifies seq in place by the Blackman window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Blackman_window and
|
||||
// https://www.recordingblogs.com/wiki/blackman-window for details.
|
||||
//
|
||||
// The Blackman window is a high-resolution window.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = 0.42 - 0.5*cos(2*π*k/(N-1)) + 0.08*cos(4*π*k/(N-1)),
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 6, ΔF_0.5 = 1.7, K = 3, ɣ_max = -58, β = -7.54.
|
||||
func BlackmanComplex(seq []complex128) []complex128 {
|
||||
const (
|
||||
a0 = 0.42
|
||||
a1 = 0.5
|
||||
a2 = 0.08
|
||||
)
|
||||
|
||||
k := 2 * math.Pi / float64(len(seq)-1)
|
||||
for i := range seq {
|
||||
x := k * float64(i)
|
||||
seq[i] *= complex(a0-a1*math.Cos(x)+a2*math.Cos(2*x), 0)
|
||||
}
|
||||
return seq
|
||||
}
|
||||
|
||||
// BlackmanHarrisComplex modifies seq in place by the Blackman-Harris window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Blackman%E2%80%93Harris_window
|
||||
// and https://www.recordingblogs.com/wiki/blackman-harris-window for details.
|
||||
//
|
||||
// The Blackman-Harris window is a low-resolution window.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = 0.35875 - 0.48829*cos(2*π*k/(N-1)) +
|
||||
// 0.14128*cos(4*π*k/(N-1)) - 0.01168*cos(6*π*k/(N-1)),
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 8, ΔF_0.5 = 1.97, K = 4, ɣ_max = -92, β = -8.91.
|
||||
func BlackmanHarrisComplex(seq []complex128) []complex128 {
|
||||
const (
|
||||
a0 = 0.35875
|
||||
a1 = 0.48829
|
||||
a2 = 0.14128
|
||||
a3 = 0.01168
|
||||
)
|
||||
|
||||
k := 2 * math.Pi / float64(len(seq)-1)
|
||||
for i := range seq {
|
||||
x := k * float64(i)
|
||||
seq[i] *= complex(a0-a1*math.Cos(x)+a2*math.Cos(2*x)-a3*math.Cos(3*x), 0)
|
||||
}
|
||||
return seq
|
||||
}
|
||||
|
||||
// NuttallComplex modifies seq in place by the Nuttall window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Nuttall_window,_continuous_first_derivative
|
||||
// and https://www.recordingblogs.com/wiki/nuttall-window for details.
|
||||
//
|
||||
// The Nuttall window is a low-resolution window.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = 0.355768 - 0.487396*cos(2*π*k/(N-1)) + 0.144232*cos(4*π*k/(N-1)) -
|
||||
// 0.012604*cos(6*π*k/(N-1)),
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 8, ΔF_0.5 = 1.98, K = 4, ɣ_max = -93, β = -9.
|
||||
func NuttallComplex(seq []complex128) []complex128 {
|
||||
const (
|
||||
a0 = 0.355768
|
||||
a1 = 0.487396
|
||||
a2 = 0.144232
|
||||
a3 = 0.012604
|
||||
)
|
||||
|
||||
k := 2 * math.Pi / float64(len(seq)-1)
|
||||
for i := range seq {
|
||||
x := k * float64(i)
|
||||
seq[i] *= complex(a0-a1*math.Cos(x)+a2*math.Cos(2*x)-a3*math.Cos(3*x), 0)
|
||||
}
|
||||
return seq
|
||||
}
|
||||
|
||||
// BlackmanNuttallComplex modifies seq in place by the Blackman-Nuttall window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Blackman%E2%80%93Nuttall_window
|
||||
// and https://www.recordingblogs.com/wiki/blackman-nuttall-window for details.
|
||||
//
|
||||
// The Blackman-Nuttall window is a low-resolution window.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = 0.3635819 - 0.4891775*cos(2*π*k/(N-1)) + 0.1365995*cos(4*π*k/(N-1)) -
|
||||
// 0.0106411*cos(6*π*k/(N-1)),
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 8, ΔF_0.5 = 1.94, K = 4, ɣ_max = -98, β = -8.8.
|
||||
func BlackmanNuttallComplex(seq []complex128) []complex128 {
|
||||
const (
|
||||
a0 = 0.3635819
|
||||
a1 = 0.4891775
|
||||
a2 = 0.1365995
|
||||
a3 = 0.0106411
|
||||
)
|
||||
|
||||
k := 2 * math.Pi / float64(len(seq)-1)
|
||||
for i := range seq {
|
||||
x := k * float64(i)
|
||||
seq[i] *= complex(a0-a1*math.Cos(x)+a2*math.Cos(2*x)-a3*math.Cos(3*x), 0)
|
||||
}
|
||||
return seq
|
||||
}
|
||||
|
||||
// FlatTopComplex modifies seq in place by the Flat Top window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Flat_top_window and
|
||||
// https://www.recordingblogs.com/wiki/flat-top-window for details.
|
||||
//
|
||||
// The Flat Top window is a low-resolution window.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = 0.21557895 - 0.41663158*cos(2*π*k/(N-1)) +
|
||||
// 0.277263158*cos(4*π*k/(N-1)) - 0.083578947*cos(6*π*k/(N-1)) +
|
||||
// 0.006947368*cos(4*π*k/(N-1)),
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// Spectral leakage parameters: ΔF_0 = 10, ΔF_0.5 = 3.72, K = 5, ɣ_max = -93.0, β = -13.34.
|
||||
func FlatTopComplex(seq []complex128) []complex128 {
|
||||
const (
|
||||
a0 = 0.21557895
|
||||
a1 = 0.41663158
|
||||
a2 = 0.277263158
|
||||
a3 = 0.083578947
|
||||
a4 = 0.006947368
|
||||
)
|
||||
|
||||
k := 2 * math.Pi / float64(len(seq)-1)
|
||||
for i := range seq {
|
||||
x := k * float64(i)
|
||||
seq[i] *= complex(a0-a1*math.Cos(x)+a2*math.Cos(2*x)-a3*math.Cos(3*x)+a4*math.Cos(4*x), 0)
|
||||
}
|
||||
return seq
|
||||
}
|
||||
|
||||
// GaussianComplex modifies seq in place by the Gaussian window and returns the result.
|
||||
// See https://en.wikipedia.org/wiki/Window_function#Gaussian_window
|
||||
// and https://www.recordingblogs.com/wiki/gaussian-window for details.
|
||||
//
|
||||
// The Gaussian window is an adjustable window.
|
||||
//
|
||||
// The sequence weights are
|
||||
// w[k] = exp(-0.5 * ((k-M)/(σ*M))² ), M = (N-1)/2,
|
||||
// for k=0,1,...,N-1 where N is the length of the window.
|
||||
//
|
||||
// The properties of window depends on the σ (sigma) argument.
|
||||
// It can be used as high or low resolution window, depending of the σ value.
|
||||
//
|
||||
// Spectral leakage parameters are summarized in the table:
|
||||
// | σ=0.3 | σ=0.5 | σ=1.2 |
|
||||
// -------|---------------------------|
|
||||
// ΔF_0 | 8 | 3.4 | 2.2 |
|
||||
// ΔF_0.5 | 1.82 | 1.2 | 0.94 |
|
||||
// K | 4 | 1.7 | 1.1 |
|
||||
// ɣ_max | -65 | -31.5 | -15.5 |
|
||||
// β | -8.52 | -4.48 | -0.96 |
|
||||
func GaussianComplex(seq []complex128, sigma float64) []complex128 {
|
||||
a := float64(len(seq)-1) / 2
|
||||
for i := range seq {
|
||||
x := -0.5 * math.Pow((float64(i)-a)/(sigma*a), 2)
|
||||
seq[i] *= complex(math.Exp(x), 0)
|
||||
}
|
||||
return seq
|
||||
}
|
Reference in New Issue
Block a user