Add dlansy and test

This commit is contained in:
btracey
2015-09-08 10:29:31 -06:00
parent 7ea69c9e3f
commit 46c37910bc
4 changed files with 219 additions and 0 deletions

View File

@@ -88,6 +88,25 @@ func (impl Implementation) Dlange(norm lapack.MatrixNorm, m, n int, a []float64,
return clapack.Dlange(byte(norm), m, n, a, lda) return clapack.Dlange(byte(norm), m, n, a, lda)
} }
// Dlansy computes the specified norm of an n×n symmetric matrix. If
// norm == lapack.MaxColumnSum or norm == lapackMaxRowSum work must have length
// at least n, otherwise work is unused.
func (impl Implementation) Dlansy(norm lapack.MatrixNorm, uplo blas.Uplo, n int, a []float64, lda int, work []float64) float64 {
checkMatrix(n, n, a, lda)
switch norm {
case lapack.MaxRowSum, lapack.MaxColumnSum, lapack.NormFrob, lapack.MaxAbs:
default:
panic(badNorm)
}
if (norm == lapack.MaxColumnSum || norm == lapack.MaxRowSum) && len(work) < n {
panic(badWork)
}
if uplo != blas.Upper && uplo != blas.Lower {
panic(badUplo)
}
return clapack.Dlansy(byte(norm), uplo, n, a, lda)
}
// Dlantr computes the specified norm of an m×n trapezoidal matrix A. If // Dlantr computes the specified norm of an m×n trapezoidal matrix A. If
// norm == lapack.MaxColumnSum work must have length at least n, otherwise work // norm == lapack.MaxColumnSum work must have length at least n, otherwise work
// is unused. // is unused.

121
native/dlansy.go Normal file
View File

@@ -0,0 +1,121 @@
package native
import (
"math"
"github.com/gonum/blas"
"github.com/gonum/lapack"
)
// Dlansy computes the specified norm of an n×n symmetric matrix. If
// norm == lapack.MaxColumnSum or norm == lapackMaxRowSum work must have length
// at least n, otherwise work is unused.
func (impl Implementation) Dlansy(norm lapack.MatrixNorm, uplo blas.Uplo, n int, a []float64, lda int, work []float64) float64 {
checkMatrix(n, n, a, lda)
switch norm {
case lapack.MaxRowSum, lapack.MaxColumnSum, lapack.NormFrob, lapack.MaxAbs:
default:
panic(badNorm)
}
if (norm == lapack.MaxColumnSum || norm == lapack.MaxRowSum) && len(work) < n {
panic(badWork)
}
if uplo != blas.Upper && uplo != blas.Lower {
panic(badUplo)
}
if n == 0 {
return 0
}
switch norm {
default:
panic("unreachable")
case lapack.MaxAbs:
if uplo == blas.Upper {
var max float64
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
v := math.Abs(a[i*lda+j])
if math.IsNaN(v) {
return math.NaN()
}
if v > max {
max = v
}
}
}
return max
}
var max float64
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
v := math.Abs(a[i*lda+j])
if math.IsNaN(v) {
return math.NaN()
}
if v > max {
max = v
}
}
}
return max
case lapack.MaxRowSum, lapack.MaxColumnSum:
// A symmetric matrix has the same 1-norm and ∞-norm.
for i := 0; i < n; i++ {
work[i] = 0
}
if uplo == blas.Upper {
for i := 0; i < n; i++ {
work[i] += math.Abs(a[i*lda+i])
for j := i + 1; j < n; j++ {
v := math.Abs(a[i*lda+j])
work[i] += v
work[j] += v
}
}
} else {
for i := 0; i < n; i++ {
for j := 0; j < i; j++ {
v := math.Abs(a[i*lda+j])
work[i] += v
work[j] += v
}
work[i] += math.Abs(a[i*lda+i])
}
}
var max float64
for i := 0; i < n; i++ {
v := work[i]
if math.IsNaN(v) {
return math.NaN()
}
if v > max {
max = v
}
}
return max
case lapack.NormFrob:
if uplo == blas.Upper {
var sum float64
for i := 0; i < n; i++ {
v := a[i*lda+i]
sum += v * v
for j := i + 1; j < n; j++ {
v := a[i*lda+j]
sum += 2 * v * v
}
}
return math.Sqrt(sum)
}
var sum float64
for i := 0; i < n; i++ {
for j := 0; j < i; j++ {
v := a[i*lda+j]
sum += 2 * v * v
}
v := a[i*lda+i]
sum += v * v
}
return math.Sqrt(sum)
}
}

View File

@@ -48,6 +48,10 @@ func TestDlange(t *testing.T) {
testlapack.DlangeTest(t, impl) testlapack.DlangeTest(t, impl)
} }
func TestDlansy(t *testing.T) {
testlapack.DlansyTest(t, impl)
}
func TestDlantr(t *testing.T) { func TestDlantr(t *testing.T) {
testlapack.DlantrTest(t, impl) testlapack.DlantrTest(t, impl)
} }

75
testlapack/dlansy.go Normal file
View File

@@ -0,0 +1,75 @@
package testlapack
import (
"math"
"math/rand"
"testing"
"github.com/gonum/blas"
"github.com/gonum/lapack"
)
type Dlansyer interface {
Dlanger
Dlansy(norm lapack.MatrixNorm, uplo blas.Uplo, n int, a []float64, lda int, work []float64) float64
}
func DlansyTest(t *testing.T, impl Dlansyer) {
for _, norm := range []lapack.MatrixNorm{lapack.MaxAbs, lapack.MaxColumnSum, lapack.MaxRowSum, lapack.NormFrob} {
for _, uplo := range []blas.Uplo{blas.Lower, blas.Upper} {
for _, test := range []struct {
n, lda int
}{
{1, 0},
{3, 0},
{1, 10},
{3, 10},
} {
for trial := 0; trial < 100; trial++ {
n := test.n
lda := test.lda
if lda == 0 {
lda = n
}
a := make([]float64, lda*n)
if trial == 0 {
for i := range a {
a[i] = float64(i)
}
} else {
for i := range a {
a[i] = rand.NormFloat64()
}
}
aDense := make([]float64, n*n)
if uplo == blas.Upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
v := a[i*lda+j]
aDense[i*n+j] = v
aDense[j*n+i] = v
}
}
} else {
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
v := a[i*lda+j]
aDense[i*n+j] = v
aDense[j*n+i] = v
}
}
}
work := make([]float64, n)
got := impl.Dlansy(norm, uplo, n, a, lda, work)
want := impl.Dlange(norm, n, n, aDense, n, work)
if math.Abs(want-got) > 1e-14 {
t.Errorf("Norm mismatch. norm = %c, upper = %v, n = %v, lda = %v, want %v, got %v.",
norm, uplo == blas.Upper, n, lda, got, want)
}
}
}
}
}
}