Began process of making sliceops godoc compatible

This commit is contained in:
btracey
2013-07-18 16:09:28 -07:00
parent bbe98dbd39
commit 3ebc707c26
2 changed files with 25 additions and 25 deletions

View File

@@ -8,7 +8,7 @@ func (i InsufficientElements) Error() string {
return "Insufficient elements found"
}
// Returns the element-wise sum of all the slices with the
// Add returns the element-wise sum of all the slices with the
// results stored in the first slice.
// Example: Add(a,b) // result will be a[i] = a[i] + b[i]
// a := make([]float64, len(b)); Add(a,b,c,d,e).
@@ -26,14 +26,14 @@ func Add(slices ...[]float64) {
}
}
// Adds a constant to all of the values in s
// AddConst adds a constant to all of the values in s
func AddConst(s []float64, c float64) {
for i := range s {
s[i] += c
}
}
// Applies a function (math.Exp, math.Sin, etc.) to every element
// ApplyFunc applies a function (math.Exp, math.Sin, etc.) to every element
// of the slice
func ApplyFunc(s []float64, f func(float64) float64) {
for i, val := range s {
@@ -41,7 +41,7 @@ func ApplyFunc(s []float64, f func(float64) float64) {
}
}
// Finds the cumulative product of the first i elements in
// Cumprod finds the cumulative product of the first i elements in
// s and puts them in place into the ith element of the
// destination. Assumes destination is at least as long as s
func Cumprod(dst, s []float64) []float64 {
@@ -58,7 +58,7 @@ func Cumprod(dst, s []float64) []float64 {
return dst
}
// Finds the cumulative sum of the first i elements in
// Cumsum finds the cumulative sum of the first i elements in
// s and puts them in place into the ith element of the
// destination. Assumes destination is at least as long as s
func Cumsum(dst, s []float64) {
@@ -68,7 +68,7 @@ func Cumsum(dst, s []float64) {
}
}
// Computes the dot product of s1 and s2, i.e.
// Dot computes the dot product of s1 and s2, i.e.
// sum_{i = 1}^N s1[n]*s2[n]
// Assumes the slices are of equal length. If this is
// in doubt it should be checked with Eqlen
@@ -80,7 +80,7 @@ func Dot(s1, s2 []float64) float64 {
return sum
}
// Returns false if |s1[i] - s2[i]| > tol for any i.
// Eq returns false if |s1[i] - s2[i]| > tol for any i.
// Assumes that the slices are of equal length. If this
// is in doubt it should be checked with Eqlen
func Eq(s1, s2 []float64, tol float64) bool {
@@ -92,7 +92,7 @@ func Eq(s1, s2 []float64, tol float64) bool {
return true
}
// Returns true if all of the slices have equal length,
// Eqlen returns true if all of the slices have equal length,
// and false otherwise.
// Special case: Returns true if there are no input slices
func Eqlen(slices ...[]float64) bool {
@@ -108,7 +108,7 @@ func Eqlen(slices ...[]float64) bool {
return true
}
// Applies a function returning a boolean to the elements of the slice
// Find applies a function returning a boolean to the elements of the slice
// and returns a list of indices for which the value is true
func Find(s []float64, f func(float64) bool) (inds []int) {
// Not sure what an appropriate capacity is here. Don't want to make
@@ -123,7 +123,7 @@ func Find(s []float64, f func(float64) bool) (inds []int) {
return inds
}
// Applies a function returning a boolean to the elements of the slice
// FindFirst applies a function returning a boolean to the elements of the slice
// and returns a list of the first k indices for which the value is true.
// If there are fewer than k indices for which the value is true, it returns
// the found indices and an error.
@@ -142,7 +142,7 @@ func FindFirst(s []float64, f func(float64) bool, k int) (inds []int, err error)
return inds, InsufficientElements{}
}
// Returns a set of N equally spaced points between l and u, where N
// Linspace returns a set of N equally spaced points between l and u, where N
// is equal to the length of the destination. The first element of the destination
// is l, the final element of the destination is u. Will panic if the destination has
// length < 2
@@ -154,7 +154,7 @@ func Linspace(dst []float64, l, u float64) {
}
}
// Returns a set of N equally spaced points in log space between l and u, where N
// Logspace returns a set of N equally spaced points in log space between l and u, where N
// is equal to the length of the destination. The first element of the destination
// is l, the final element of the destination is u. Will panic if the destination has
// length < 2. Note that this call will return NaNs if l or u are negative, and
@@ -164,7 +164,7 @@ func Logspace(dst []float64, l, u float64) {
ApplyFunc(dst, math.Exp)
}
// Returns the log of the sum of the exponentials of the values in s
// Logsumexp returns the log of the sum of the exponentials of the values in s
func Logsumexp(s []float64) (logsumexp float64) {
// Want to do this in a numerically stable way which avoids
// overflow and underflow
@@ -189,7 +189,7 @@ func Logsumexp(s []float64) (logsumexp float64) {
return logsumexp
}
// Returns the maximum value in the slice and the location of
// Max returns the maximum value in the slice and the location of
// the maximum value. If the input slice is empty, zero is returned
// as the minimum value and -1 is returned as the index.
// Use: val,ind := sliceops.Max(slice)
@@ -208,7 +208,7 @@ func Max(s []float64) (max float64, ind int) {
return max, ind
}
// Returns the minimum value in the slice and the index of
// Min returns the minimum value in the slice and the index of
// the minimum value. If the input slice is empty, zero is returned
// as the minimum value and -1 is returned as the index.
// Use: val,ind := sliceops.Min(slice)
@@ -227,7 +227,7 @@ func Min(s []float64) (min float64, ind int) {
return min, ind
}
// Returns the L norm of the slice S.
// Norm returns the L norm of the slice S.
// Special cases:
// L = math.Inf(1) gives the maximum value
// Does not correctly compute the zero norm, as the zero norm is a count.
@@ -258,7 +258,7 @@ func Norm(s []float64, L float64) (norm float64) {
return math.Pow(norm, 1/L)
}
// Returns the product of the elements of the slice
// Prod returns the product of the elements of the slice
// Returns 1 if the input has length zero
func Prod(s []float64) (prod float64) {
prod = 1
@@ -268,14 +268,14 @@ func Prod(s []float64) (prod float64) {
return prod
}
// Multiplies every element in s by a constant in place
// Scale multiplies every element in s by a constant in place
func Scale(s []float64, c float64) {
for i := range s {
s[i] *= c
}
}
// Subtract, element-wise, the first argument from the second. Assumes
// Sub subtracts, element-wise, the first argument from the second. Assumes
// the lengths of s and t match (can be tested with EqLen)
func Sub(s, t []float64) {
for i, val := range t {
@@ -283,7 +283,7 @@ func Sub(s, t []float64) {
}
}
// Subtract, element-wise, the first argument from the second and
// SubDst subtracts, element-wise, the first argument from the second and
// store the result in destination. Assumes the lengths of s and t match
// (can be tested with EqLen)
func SubDst(dst, s, t []float64) {
@@ -292,7 +292,7 @@ func SubDst(dst, s, t []float64) {
}
}
// Returns the sum of the elements of the slice
// Sum returns the sum of the elements of the slice
func Sum(s []float64) (sum float64) {
for _, val := range s {
sum += val