Add the linear solve routines (Dgetrs, Dgels) to the lapack64 interface

This commit is contained in:
btracey
2015-08-03 23:55:26 -06:00
parent 6c115f0613
commit 376807a880
6 changed files with 137 additions and 10 deletions

View File

@@ -36,6 +36,13 @@ func min(m, n int) int {
return n return n
} }
func max(m, n int) int {
if m < n {
return n
}
return m
}
// checkMatrix verifies the parameters of a matrix input. // checkMatrix verifies the parameters of a matrix input.
// Copied from lapack/native. Keep in sync. // Copied from lapack/native. Keep in sync.
func checkMatrix(m, n int, a []float64, lda int) { func checkMatrix(m, n int, a []float64, lda int) {
@@ -193,6 +200,50 @@ func (impl Implementation) Dgeqrf(m, n int, a []float64, lda int, tau, work []fl
clapack.Dgeqrf(m, n, a, lda, tau) clapack.Dgeqrf(m, n, a, lda, tau)
} }
// Dgels finds a minimum-norm solution based on the matrices A and B using the
// QR or LQ factorization. Dgels returns false if the matrix
// A is singular, and true if this solution was successfully found.
//
// The minimization problem solved depends on the input parameters.
//
// 1. If m >= n and trans == blas.NoTrans, Dgels finds X such that || A*X - B||_2
// is minimized.
// 2. If m < n and trans == blas.NoTrans, Dgels finds the minimum norm solution of
// A * X = B.
// 3. If m >= n and trans == blas.Trans, Dgels finds the minimum norm solution of
// A^T * X = B.
// 4. If m < n and trans == blas.Trans, Dgels finds X such that || A*X - B||_2
// is minimized.
// Note that the least-squares solutions (cases 1 and 3) perform the minimization
// per column of B. This is not the same as finding the minimum-norm matrix.
//
// The matrix A is a general matrix of size m×n and is modified during this call.
// The input matrix B is of size max(m,n)×nrhs, and serves two purposes. On entry,
// the elements of b specify the input matrix B. B has size m×nrhs if
// trans == blas.NoTrans, and n×nrhs if trans == blas.Trans. On exit, the
// leading submatrix of b contains the solution vectors X. If trans == blas.NoTrans,
// this submatrix is of size n×nrhs, and of size m×nrhs otherwise.
//
// The C interface does not support providing temporary storage. To provide compatibility
// with native, lwork == -1 will not run Dgeqrf but will instead write the minimum
// work necessary to work[0]. If len(work) < lwork, Dgeqrf will panic.
func (impl Implementation) Dgels(trans blas.Transpose, m, n, nrhs int, a []float64, lda int, b []float64, ldb int, work []float64, lwork int) bool {
mn := min(m, n)
if lwork == -1 {
work[0] = float64(mn + max(mn, nrhs))
return true
}
checkMatrix(m, n, a, lda)
checkMatrix(mn, nrhs, b, ldb)
if len(work) < lwork {
panic(shortWork)
}
if lwork < mn+max(mn, nrhs) {
panic(badWork)
}
return clapack.Dgels(trans, m, n, nrhs, a, lda, b, ldb)
}
// Dgetf2 computes the LU decomposition of the m×n matrix A. // Dgetf2 computes the LU decomposition of the m×n matrix A.
// The LU decomposition is a factorization of a into // The LU decomposition is a factorization of a into
// A = P * L * U // A = P * L * U
@@ -223,7 +274,7 @@ func (Implementation) Dgetf2(m, n int, a []float64, lda int, ipiv []int) (ok boo
} }
// Dgetrf computes the LU decomposition of the m×n matrix A. // Dgetrf computes the LU decomposition of the m×n matrix A.
// The LU decomposition is a factorization of a into // The LU decomposition is a factorization of A into
// A = P * L * U // A = P * L * U
// where P is a permutation matrix, L is a unit lower triangular matrix, and // where P is a permutation matrix, L is a unit lower triangular matrix, and
// U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored // U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored

View File

@@ -20,6 +20,10 @@ func TestDgelq2(t *testing.T) {
testlapack.Dgelq2Test(t, impl) testlapack.Dgelq2Test(t, impl)
} }
func TestDgels(t *testing.T) {
testlapack.DgelsTest(t, impl)
}
func TestDgelqf(t *testing.T) { func TestDgelqf(t *testing.T) {
testlapack.DgelqfTest(t, impl) testlapack.DgelqfTest(t, impl)
} }

View File

@@ -23,9 +23,12 @@ type Complex128 interface{}
// Float64 defines the public float64 LAPACK API supported by gonum/lapack. // Float64 defines the public float64 LAPACK API supported by gonum/lapack.
type Float64 interface { type Float64 interface {
Dgels(trans blas.Transpose, m, n, nrhs int, a []float64, lda int, b []float64, ldb int, work []float64, lwork int) bool
Dgelqf(m, n int, a []float64, lda int, tau, work []float64, lwork int) Dgelqf(m, n int, a []float64, lda int, tau, work []float64, lwork int)
Dgeqrf(m, n int, a []float64, lda int, tau, work []float64, lwork int) Dgeqrf(m, n int, a []float64, lda int, tau, work []float64, lwork int)
Dpotrf(ul blas.Uplo, n int, a []float64, lda int) (ok bool) Dpotrf(ul blas.Uplo, n int, a []float64, lda int) (ok bool)
Dgetrf(m, n int, a []float64, lda int, ipiv []int) (ok bool)
Dgetrs(trans blas.Transpose, n, nrhs int, a []float64, lda int, ipiv []int, b []float64, ldb int)
} }
// Direct specifies the direction of the multiplication for the Householder matrix. // Direct specifies the direction of the multiplication for the Householder matrix.

View File

@@ -48,6 +48,39 @@ func Potrf(a blas64.Symmetric) (t blas64.Triangular, ok bool) {
return return
} }
// Gels finds a minimum-norm solution based on the matrices A and B using the
// QR or LQ factorization. Dgels returns false if the matrix
// A is singular, and true if this solution was successfully found.
//
// The minimization problem solved depends on the input parameters.
//
// 1. If m >= n and trans == blas.NoTrans, Dgels finds X such that || A*X - B||_2
// is minimized.
// 2. If m < n and trans == blas.NoTrans, Dgels finds the minimum norm solution of
// A * X = B.
// 3. If m >= n and trans == blas.Trans, Dgels finds the minimum norm solution of
// A^T * X = B.
// 4. If m < n and trans == blas.Trans, Dgels finds X such that || A*X - B||_2
// is minimized.
// Note that the least-squares solutions (cases 1 and 3) perform the minimization
// per column of B. This is not the same as finding the minimum-norm matrix.
//
// The matrix A is a general matrix of size m×n and is modified during this call.
// The input matrix B is of size max(m,n)×nrhs, and serves two purposes. On entry,
// the elements of b specify the input matrix B. B has size m×nrhs if
// trans == blas.NoTrans, and n×nrhs if trans == blas.Trans. On exit, the
// leading submatrix of b contains the solution vectors X. If trans == blas.NoTrans,
// this submatrix is of size n×nrhs, and of size m×nrhs otherwise.
//
// Work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= max(m,n) + max(m,n,nrhs), and this function will panic
// otherwise. A longer work will enable blocked algorithms to be called.
// In the special case that lwork == -1, work[0] will be set to the optimal working
// length.
func Gels(trans blas.Transpose, a blas64.General, b blas64.General, work []float64, lwork int) {
lapack64.Dgels(trans, a.Rows, a.Cols, b.Cols, a.Data, a.Stride, b.Data, b.Stride, work, lwork)
}
// Geqrf computes the QR factorization of the m×n matrix A using a blocked // Geqrf computes the QR factorization of the m×n matrix A using a blocked
// algorithm. A is modified to contain the information to construct Q and R. // algorithm. A is modified to contain the information to construct Q and R.
// The upper triangle of a contains the matrix R. The lower triangular elements // The upper triangle of a contains the matrix R. The lower triangular elements
@@ -93,3 +126,39 @@ func Geqrf(a blas64.General, tau, work []float64, lwork int) {
func Gelqf(a blas64.General, tau, work []float64, lwork int) { func Gelqf(a blas64.General, tau, work []float64, lwork int) {
lapack64.Dgelqf(a.Rows, a.Cols, a.Data, a.Stride, tau, work, lwork) lapack64.Dgelqf(a.Rows, a.Cols, a.Data, a.Stride, tau, work, lwork)
} }
// Getrf computes the LU decomposition of the m×n matrix A.
// The LU decomposition is a factorization of A into
// A = P * L * U
// where P is a permutation matrix, L is a unit lower triangular matrix, and
// U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored
// in place into a.
//
// ipiv is a permutation vector. It indicates that row i of the matrix was
// changed with ipiv[i]. ipiv must have length at least min(m,n), and will panic
// otherwise. ipiv is zero-indexed.
//
// Dgetrf is the blocked version of the algorithm.
//
// Dgetrf returns whether the matrix A is singular. The LU decomposition will
// be computed regardless of the singularity of A, but division by zero
// will occur if the false is returned and the result is used to solve a
// system of equations.
func Getrf(a blas64.General, ipiv []int) bool {
return lapack64.Dgetrf(a.Rows, a.Cols, a.Data, a.Stride, ipiv)
}
// Dgetrs solves a system of equations using an LU factorization.
// The system of equations solved is
// A * X = B if trans == blas.Trans
// A^T * X = B if trans == blas.NoTrans
// A is a general n×n matrix with stride lda. B is a general matrix of size n×nrhs.
//
// On entry b contains the elements of the matrix B. On exit, b contains the
// elements of X, the solution to the system of equations.
//
// a and ipiv contain the LU factorization of A and the permutation indices as
// computed by Getrf. ipiv is zero-indexed.
func Getrs(trans blas.Transpose, a blas64.General, b blas64.General, ipiv []int) {
lapack64.Dgetrs(trans, a.Cols, b.Cols, a.Data, a.Stride, ipiv, b.Data, b.Stride)
}

View File

@@ -9,25 +9,25 @@ import (
"github.com/gonum/lapack" "github.com/gonum/lapack"
) )
// Dgels finds a minimum-norm solution based on the matrices a and b using the // Dgels finds a minimum-norm solution based on the matrices A and B using the
// QR or LQ factorization. Dgels returns false if the matrix // QR or LQ factorization. Dgels returns false if the matrix
// A is singular, and true if this solution was successfully found. // A is singular, and true if this solution was successfully found.
// //
// The minimization problem solved depends on the input parameters. // The minimization problem solved depends on the input parameters.
// //
// 1. If m >= n and trans == blas.NoTrans, Dgels finds X such that || A*X - B||_2 // 1. If m >= n and trans == blas.NoTrans, Dgels finds X such that || A*X - B||_2
// is minimized. // is minimized.
// 2. If m < n and trans == blas.NoTrans, Dgels finds the minimum norm solution of // 2. If m < n and trans == blas.NoTrans, Dgels finds the minimum norm solution of
// A * X = B. // A * X = B.
// 3. If m >= n and trans == blas.Trans, Dgels finds the minimum norm solution of // 3. If m >= n and trans == blas.Trans, Dgels finds the minimum norm solution of
// A^T * X = B. // A^T * X = B.
// 4. If m < n and trans == blas.Trans, Dgels finds X such that || A*X - B||_2 // 4. If m < n and trans == blas.Trans, Dgels finds X such that || A*X - B||_2
// is minimized. // is minimized.
// Note that the least-squares solutions (cases 1 and 3) perform the minimization // Note that the least-squares solutions (cases 1 and 3) perform the minimization
// per column of B. This is not the same as finding the minimum-norm matrix. // per column of B. This is not the same as finding the minimum-norm matrix.
// //
// The matrix a is a general matrix of size m×n and is modified during this call. // The matrix A is a general matrix of size m×n and is modified during this call.
// The input matrix b is of size max(m,n)×nrhs, and serves two purposes. On entry, // The input matrix B is of size max(m,n)×nrhs, and serves two purposes. On entry,
// the elements of b specify the input matrix B. B has size m×nrhs if // the elements of b specify the input matrix B. B has size m×nrhs if
// trans == blas.NoTrans, and n×nrhs if trans == blas.Trans. On exit, the // trans == blas.NoTrans, and n×nrhs if trans == blas.Trans. On exit, the
// leading submatrix of b contains the solution vectors X. If trans == blas.NoTrans, // leading submatrix of b contains the solution vectors X. If trans == blas.NoTrans,

View File

@@ -5,8 +5,8 @@ import (
"github.com/gonum/blas/blas64" "github.com/gonum/blas/blas64"
) )
// Dgetrf computes the LU decomposition of the m×n matrix a. // Dgetrf computes the LU decomposition of the m×n matrix A.
// The LU decomposition is a factorization of a into // The LU decomposition is a factorization of A into
// A = P * L * U // A = P * L * U
// where P is a permutation matrix, L is a unit lower triangular matrix, and // where P is a permutation matrix, L is a unit lower triangular matrix, and
// U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored // U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored