graph/path: implement sophisticated algorithm

Both algorithms are included since the LTA appears to beat the SLTA for
all normal uses, but the SLTA beats the LTA for very large dense graphs.

Leave tools in the benchmark code to allow users to determine which one
they want to use for their data.
This commit is contained in:
kortschak
2017-09-06 12:25:37 +09:30
parent 9baf9959f7
commit 1b3b29f16b
4 changed files with 276 additions and 19 deletions

View File

@@ -7,6 +7,7 @@
package path
import (
"flag"
"fmt"
"io/ioutil"
"math"
@@ -23,6 +24,8 @@ import (
"gonum.org/v1/gonum/graph/topo"
)
var slta = flag.Bool("slta", false, "specify DominatorsSLT benchmark")
func BenchmarkDominators(b *testing.B) {
testdata := filepath.FromSlash("./testdata/flow")
@@ -55,6 +58,16 @@ func BenchmarkDominators(b *testing.B) {
continue
}
if *slta {
b.Run(test, func(b *testing.B) {
for i := 0; i < b.N; i++ {
d := DominatorsSLT(g.root, g)
if got := d.Root(); got.ID() != want.ID() {
b.Fatalf("unexpected root node: got:%d want:%d", got.ID(), want.ID())
}
}
})
} else {
b.Run(test, func(b *testing.B) {
for i := 0; i < b.N; i++ {
d := Dominators(g.root, g)
@@ -64,6 +77,7 @@ func BenchmarkDominators(b *testing.B) {
}
})
}
}
}
type labeled struct {

View File

@@ -0,0 +1,232 @@
// Copyright ©2017 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package path
import "gonum.org/v1/gonum/graph"
// DominatorsSLT returns a dominator tree for all nodes in the flow graph
// g starting from the given root node using the sophisticated version of
// the Lengauer-Tarjan algorithm. The SLT algorithm may outperform the
// simple LT algorithm for very large dense graphs.
func DominatorsSLT(root graph.Node, g graph.Directed) DominatorTree {
// The algorithm used here is essentially the
// sophisticated Lengauer and Tarjan algorithm
// described in
// https://doi.org/10.1145%2F357062.357071
lt := sLengauerTarjan{
indexOf: make(map[int64]int),
base: sltNode{semi: -1},
}
lt.base.label = &lt.base
// step 1.
lt.dfs(g, root)
for i := len(lt.nodes) - 1; i > 0; i-- {
w := lt.nodes[i]
// step 2.
for _, v := range w.pred {
u := lt.eval(v)
if u.semi < w.semi {
w.semi = u.semi
}
}
lt.nodes[w.semi].bucket[w] = struct{}{}
lt.link(w.parent, w)
// step 3.
for v := range w.parent.bucket {
delete(w.parent.bucket, v)
u := lt.eval(v)
if u.semi < v.semi {
v.dom = u
} else {
v.dom = w.parent
}
}
}
// step 4.
for _, w := range lt.nodes[1:] {
if w.dom.node.ID() != lt.nodes[w.semi].node.ID() {
w.dom = w.dom.dom
}
}
// Construct the public-facing dominator tree structure.
dominatorOf := make(map[int64]graph.Node)
dominatedBy := make(map[int64][]graph.Node)
for _, w := range lt.nodes[1:] {
dominatorOf[w.node.ID()] = w.dom.node
did := w.dom.node.ID()
dominatedBy[did] = append(dominatedBy[did], w.node)
}
return DominatorTree{root: root, dominatorOf: dominatorOf, dominatedBy: dominatedBy}
}
// sLengauerTarjan holds global state of the Lengauer-Tarjan algorithm.
// This is a mapping between nodes and the postordering of the nodes.
type sLengauerTarjan struct {
// nodes is the nodes traversed during the
// Lengauer-Tarjan depth-first-search.
nodes []*sltNode
// indexOf contains a mapping between
// the id-dense representation of the
// graph and the potentially id-sparse
// nodes held in nodes.
//
// This corresponds to the vertex
// number of the node in the Lengauer-
// Tarjan algorithm.
indexOf map[int64]int
// base is the base label for balanced
// tree path compression used in the
// sophisticated Lengauer-Tarjan
// algorith,
base sltNode
}
// sltNode is a graph node with accounting for the Lengauer-Tarjan
// algorithm.
//
// For the purposes of documentation the ltNode is given the name w.
type sltNode struct {
node graph.Node
// parent is vertex which is the parent of w
// in the spanning tree generated by the search.
parent *sltNode
// pred is the set of vertices v such that (v, w)
// is an edge of the graph.
pred []*sltNode
// semi is a number defined as follows:
// (i) After w is numbered but before its semidominator
// is computed, semi is the number of w.
// (ii) After the semidominator of w is computed, semi
// is the number of the semidominator of w.
semi int
// size is the tree size of w used in the
// sophisticated algorithm.
size int
// child is the child node of w used in the
// sophisticated algorithm.
child *sltNode
// bucket is the set of vertices whose
// semidominator is w.
bucket map[*sltNode]struct{}
// dom is vertex defined as follows:
// (i) After step 3, if the semidominator of w is its
// immediate dominator, then dom is the immediate
// dominator of w. Otherwise dom is a vertex v
// whose number is smaller than w and whose immediate
// dominator is also w's immediate dominator.
// (ii) After step 4, dom is the immediate dominator of w.
dom *sltNode
// In general ancestor is nil only if w is a tree root
// in the forest; otherwise ancestor is an ancestor
// of w in the forest.
ancestor *sltNode
// Initially label is w. It is adjusted during
// the algorithm to maintain invariant (3) in the
// Lengauer and Tarjan paper.
label *sltNode
}
// dfs is the Sophisticated Lengauer-Tarjan DFS procedure.
func (lt *sLengauerTarjan) dfs(g graph.Directed, v graph.Node) {
i := len(lt.nodes)
lt.indexOf[v.ID()] = i
ltv := &sltNode{
node: v,
semi: i,
size: 1,
child: &lt.base,
bucket: make(map[*sltNode]struct{}),
}
ltv.label = ltv
lt.nodes = append(lt.nodes, ltv)
for _, w := range g.From(v) {
wid := w.ID()
idx, ok := lt.indexOf[wid]
if !ok {
lt.dfs(g, w)
// We place this below the recursive call
// in contrast to the original algorithm
// since w needs to be initialised, and
// this happens in the child call to dfs.
idx, ok = lt.indexOf[wid]
if !ok {
panic("path: unintialized node")
}
lt.nodes[idx].parent = ltv
}
ltw := lt.nodes[idx]
ltw.pred = append(ltw.pred, ltv)
}
}
// compress is the Sophisticated Lengauer-Tarjan COMPRESS procedure.
func (lt *sLengauerTarjan) compress(v *sltNode) {
if v.ancestor.ancestor != nil {
lt.compress(v.ancestor)
if v.ancestor.label.semi < v.label.semi {
v.label = v.ancestor.label
}
v.ancestor = v.ancestor.ancestor
}
}
// eval is the Sophisticated Lengauer-Tarjan EVAL function.
func (lt *sLengauerTarjan) eval(v *sltNode) *sltNode {
if v.ancestor == nil {
return v.label
}
lt.compress(v)
if v.ancestor.label.semi >= v.label.semi {
return v.label
}
return v.ancestor.label
}
// link is the Sophisticated Lengauer-Tarjan LINK procedure.
func (*sLengauerTarjan) link(v, w *sltNode) {
s := w
for w.label.semi < s.child.label.semi {
if s.size+s.child.child.size >= 2*s.child.size {
s.child.ancestor = s
s.child = s.child.child
} else {
s.child.size = s.size
s.ancestor = s.child
s = s.child
}
}
s.label = w.label
v.size += w.size
if v.size < 2*w.size {
s, v.child = v.child, s
}
for s != nil {
s.ancestor = v
s = s.child
}
}

View File

@@ -138,20 +138,31 @@ func TestDominators(t *testing.T) {
g.SetEdge(e)
}
got := Dominators(test.n, g)
for _, alg := range []struct {
name string
fn func(graph.Node, graph.Directed) DominatorTree
}{
{"Dominators", Dominators},
{"DominatorsSLT", DominatorsSLT},
} {
got := alg.fn(test.n, g)
if !reflect.DeepEqual(got.root, test.want.root) {
t.Errorf("unexpected dominator tree root: got:%v want:%v", got.root, test.want.root)
t.Errorf("unexpected dominator tree root from %s: got:%v want:%v",
alg.name, got.root, test.want.root)
}
if !reflect.DeepEqual(got.dominatorOf, test.want.dominatorOf) {
t.Errorf("unexpected dominator tree: got:%v want:%v", got.dominatorOf, test.want.dominatorOf)
t.Errorf("unexpected dominator tree from %s: got:%v want:%v",
alg.name, got.dominatorOf, test.want.dominatorOf)
}
for _, nodes := range got.dominatedBy {
sort.Sort(ordered.ByID(nodes))
}
if !reflect.DeepEqual(got.dominatedBy, test.want.dominatedBy) {
t.Errorf("unexpected dominator tree: got:%v want:%v", got.dominatedBy, test.want.dominatedBy)
t.Errorf("unexpected dominator tree from %s: got:%v want:%v",
alg.name, got.dominatedBy, test.want.dominatedBy)
}
}
}
}