blas,lapack: clean up docs and comments

Apply (with manual curation after the fact):
* s/^T/U+1d40/g
* s/^H/U+1d34/g
* s/, {2,3}if / $1/g

Some additional manual editing of odd formatting.
This commit is contained in:
Dan Kortschak
2019-09-03 13:46:38 +09:30
parent 2065cbd6b4
commit 17ea55aedb
164 changed files with 949 additions and 949 deletions

View File

@@ -54,7 +54,7 @@ func dpbtrfTest(t *testing.T, impl Dpbtrfer, uplo blas.Uplo, n, kd int, ldab int
t.Fatalf("%v: bad test matrix, Dpbtrf failed", name)
}
// Reconstruct an symmetric band matrix from the U^T*U or L*L^T factorization, overwriting abFac.
// Reconstruct an symmetric band matrix from the U*U or L*L factorization, overwriting abFac.
dsbmm(uplo, n, kd, abFac, ldab)
// Compute and check the max-norm distance between the reconstructed and original matrix A.
@@ -65,15 +65,15 @@ func dpbtrfTest(t *testing.T, impl Dpbtrfer, uplo blas.Uplo, n, kd int, ldab int
}
// dsbmm computes a symmetric band matrix A
// A = U^T*U if uplo == blas.Upper,
// A = L*L^T if uplo == blas.Lower,
// A = U*U if uplo == blas.Upper,
// A = L*L if uplo == blas.Lower,
// where U and L is an upper, respectively lower, triangular band matrix
// stored on entry in ab. The result is stored in-place into ab.
func dsbmm(uplo blas.Uplo, n, kd int, ab []float64, ldab int) {
bi := blas64.Implementation()
switch uplo {
case blas.Upper:
// Compute the product U^T * U.
// Compute the product U * U.
for k := n - 1; k >= 0; k-- {
klen := min(kd, n-k-1) // Number of stored off-diagonal elements in the row
// Add a multiple of row k of the factor U to each of rows k+1 through n.
@@ -84,7 +84,7 @@ func dsbmm(uplo blas.Uplo, n, kd int, ab []float64, ldab int) {
bi.Dscal(klen+1, ab[k*ldab], ab[k*ldab:], 1)
}
case blas.Lower:
// Compute the product L * L^T.
// Compute the product L * L.
for k := n - 1; k >= 0; k-- {
kc := max(0, kd-k) // Index of the first valid element in the row
klen := kd - kc // Number of stored off-diagonal elements in the row