graph: make graph analysis routines safe for indeterminate iterators

This is a change in design for the graph.NodesOf family of functions. The
alternative was to provide an equivalent set of non-panicking routines in
graph for internal use. The protection that was intended with the panic
was to panic early rather than late when an indeterminate iterator exhausts
slice index space. I think in hindsight this was an error and we should
let things blow up in that (likely rare) situation.

The majority of changes are in test code. Outside the iterator package, which
is intimately tied to the determined iterator implementations, only one test
now fails if an indeterminate iterator is used, product's Modular extended
sub-graph isomorphism example, which is an algorithm that would have time
complexity issues with large iterators anyway.
This commit is contained in:
Dan Kortschak
2020-06-12 09:30:06 +09:30
parent 39cd12e938
commit 142f1a8c6b
12 changed files with 138 additions and 107 deletions

View File

@@ -28,7 +28,7 @@ var complementTests = []struct {
func TestComplement(t *testing.T) { func TestComplement(t *testing.T) {
for _, test := range complementTests { for _, test := range complementTests {
n := test.g.Nodes().Len() n := len(graph.NodesOf(test.g.Nodes()))
wantM := n * (n - 1) // Double counting edges, but no self-loops. wantM := n * (n - 1) // Double counting edges, but no self-loops.
var gotM int var gotM int
@@ -72,6 +72,10 @@ var nodeFilterIteratorTests = []struct {
func TestNodeFilterIterator(t *testing.T) { func TestNodeFilterIterator(t *testing.T) {
for _, test := range nodeFilterIteratorTests { for _, test := range nodeFilterIteratorTests {
it := graph.NewNodeFilterIterator(test.src, test.filter, test.root) it := graph.NewNodeFilterIterator(test.src, test.filter, test.root)
if it.Len() < 0 {
t.Logf("don't test indeterminate iterators: %T", it)
continue
}
for i := 0; i < 2; i++ { for i := 0; i < 2; i++ {
n := it.Len() n := it.Len()
if n != test.len { if n != test.len {

View File

@@ -221,17 +221,16 @@ func TestPowerLawUndirected(t *testing.T) {
t.Fatalf("unexpected error: n=%d, d=%d: %v", n, d, err) t.Fatalf("unexpected error: n=%d, d=%d: %v", n, d, err)
} }
nodes := g.Nodes() nodes := graph.NodesOf(g.Nodes())
if nodes.Len() != n { if len(nodes) != n {
t.Errorf("unexpected number of nodes in graph: n=%d, d=%d: got:%d", n, d, nodes.Len()) t.Errorf("unexpected number of nodes in graph: n=%d, d=%d: got:%d", n, d, len(nodes))
} }
for nodes.Next() { for _, u := range nodes {
u := nodes.Node()
uid := u.ID() uid := u.ID()
var lines int var lines int
for _, v := range graph.NodesOf(g.From(uid)) { for _, v := range graph.NodesOf(g.From(uid)) {
lines += g.Lines(uid, v.ID()).Len() lines += len(graph.LinesOf(g.Lines(uid, v.ID())))
} }
if lines < d { if lines < d {
t.Errorf("unexpected degree below d: n=%d, d=%d: got:%d", n, d, lines) t.Errorf("unexpected degree below d: n=%d, d=%d: got:%d", n, d, lines)
@@ -252,17 +251,16 @@ func TestPowerLawDirected(t *testing.T) {
t.Fatalf("unexpected error: n=%d, d=%d: %v", n, d, err) t.Fatalf("unexpected error: n=%d, d=%d: %v", n, d, err)
} }
nodes := g.Nodes() nodes := graph.NodesOf(g.Nodes())
if nodes.Len() != n { if len(nodes) != n {
t.Errorf("unexpected number of nodes in graph: n=%d, d=%d: got:%d", n, d, nodes.Len()) t.Errorf("unexpected number of nodes in graph: n=%d, d=%d: got:%d", n, d, len(nodes))
} }
for nodes.Next() { for _, u := range nodes {
u := nodes.Node()
uid := u.ID() uid := u.ID()
var lines int var lines int
for _, v := range graph.NodesOf(g.From(uid)) { for _, v := range graph.NodesOf(g.From(uid)) {
lines += g.Lines(uid, v.ID()).Len() lines += len(graph.LinesOf(g.Lines(uid, v.ID())))
} }
if lines < d { if lines < d {
t.Errorf("unexpected degree below d: n=%d, d=%d: got:%d", n, d, lines) t.Errorf("unexpected degree below d: n=%d, d=%d: got:%d", n, d, lines)
@@ -283,9 +281,9 @@ func TestBipartitePowerLawUndirected(t *testing.T) {
t.Fatalf("unexpected error: n=%d, d=%d: %v", n, d, err) t.Fatalf("unexpected error: n=%d, d=%d: %v", n, d, err)
} }
nodes := g.Nodes() nodes := graph.NodesOf(g.Nodes())
if nodes.Len() != 2*n { if len(nodes) != 2*n {
t.Errorf("unexpected number of nodes in graph: n=%d, d=%d: got:%d", n, d, nodes.Len()) t.Errorf("unexpected number of nodes in graph: n=%d, d=%d: got:%d", n, d, len(nodes))
} }
if len(p1) != n { if len(p1) != n {
t.Errorf("unexpected number of nodes in p1: n=%d, d=%d: got:%d", n, d, len(p1)) t.Errorf("unexpected number of nodes in p1: n=%d, d=%d: got:%d", n, d, len(p1))
@@ -307,12 +305,11 @@ func TestBipartitePowerLawUndirected(t *testing.T) {
t.Errorf("unexpected overlap in partition membership: n=%d, d=%d: got:%d", n, d, len(o)) t.Errorf("unexpected overlap in partition membership: n=%d, d=%d: got:%d", n, d, len(o))
} }
for nodes.Next() { for _, u := range nodes {
u := nodes.Node()
uid := u.ID() uid := u.ID()
var lines int var lines int
for _, v := range graph.NodesOf(g.From(uid)) { for _, v := range graph.NodesOf(g.From(uid)) {
lines += g.Lines(uid, v.ID()).Len() lines += len(graph.LinesOf(g.Lines(uid, v.ID())))
} }
if lines < d { if lines < d {
t.Errorf("unexpected degree below d: n=%d, d=%d: got:%d", n, d, lines) t.Errorf("unexpected degree below d: n=%d, d=%d: got:%d", n, d, lines)
@@ -333,9 +330,9 @@ func TestBipartitePowerLawDirected(t *testing.T) {
t.Fatalf("unexpected error: n=%d, d=%d: %v", n, d, err) t.Fatalf("unexpected error: n=%d, d=%d: %v", n, d, err)
} }
nodes := g.Nodes() nodes := graph.NodesOf(g.Nodes())
if nodes.Len() != 2*n { if len(nodes) != 2*n {
t.Errorf("unexpected number of nodes in graph: n=%d, d=%d: got:%d", n, d, nodes.Len()) t.Errorf("unexpected number of nodes in graph: n=%d, d=%d: got:%d", n, d, len(nodes))
} }
if len(p1) != n { if len(p1) != n {
t.Errorf("unexpected number of nodes in p1: n=%d, d=%d: got:%d", n, d, len(p1)) t.Errorf("unexpected number of nodes in p1: n=%d, d=%d: got:%d", n, d, len(p1))
@@ -357,12 +354,11 @@ func TestBipartitePowerLawDirected(t *testing.T) {
t.Errorf("unexpected overlap in partition membership: n=%d, d=%d: got:%d", n, d, len(o)) t.Errorf("unexpected overlap in partition membership: n=%d, d=%d: got:%d", n, d, len(o))
} }
for nodes.Next() { for _, u := range nodes {
u := nodes.Node()
uid := u.ID() uid := u.ID()
var lines int var lines int
for _, v := range graph.NodesOf(g.From(uid)) { for _, v := range graph.NodesOf(g.From(uid)) {
lines += g.Lines(uid, v.ID()).Len() lines += len(graph.LinesOf(g.Lines(uid, v.ID())))
} }
if lines < d { if lines < d {
t.Errorf("unexpected degree below d: n=%d, d=%d: got:%d", n, d, lines) t.Errorf("unexpected degree below d: n=%d, d=%d: got:%d", n, d, lines)

View File

@@ -65,13 +65,15 @@ func (u *EadesR2) Update(g graph.Graph, layout LayoutR2) bool {
} }
u.nodes = g.Nodes() u.nodes = g.Nodes()
u.indexOf = make(map[int64]int, u.nodes.Len()) u.indexOf = make(map[int64]int, u.nodes.Len())
if u.nodes.Len() >= 0 {
u.particles = make([]barneshut.Particle2, 0, u.nodes.Len()) u.particles = make([]barneshut.Particle2, 0, u.nodes.Len())
u.forces = make([]r2.Vec, u.nodes.Len()) }
for u.nodes.Next() { for u.nodes.Next() {
id := u.nodes.Node().ID() id := u.nodes.Node().ID()
u.indexOf[id] = len(u.particles) u.indexOf[id] = len(u.particles)
u.particles = append(u.particles, eadesR2Node{id: id, pos: r2.Vec{X: rnd(), Y: rnd()}}) u.particles = append(u.particles, eadesR2Node{id: id, pos: r2.Vec{X: rnd(), Y: rnd()}})
} }
u.forces = make([]r2.Vec, len(u.particles))
} }
u.nodes.Reset() u.nodes.Reset()

View File

@@ -27,8 +27,14 @@ func (p render) Plot(c draw.Canvas, plt *plot.Plot) {
if nodes.Len() == 0 { if nodes.Len() == 0 {
return return
} }
xys := make(plotter.XYs, 0, nodes.Len()) var (
ids := make([]string, 0, nodes.Len()) xys plotter.XYs
ids []string
)
if nodes.Len() >= 0 {
xys = make(plotter.XYs, 0, nodes.Len())
ids = make([]string, 0, nodes.Len())
}
for nodes.Next() { for nodes.Next() {
u := nodes.Node() u := nodes.Node()
uid := u.ID() uid := u.ID()
@@ -81,7 +87,10 @@ func (p render) DataRange() (xmin, xmax, ymin, ymax float64) {
if nodes.Len() == 0 { if nodes.Len() == 0 {
return return
} }
xys := make(plotter.XYs, 0, nodes.Len()) var xys plotter.XYs
if nodes.Len() >= 0 {
xys = make(plotter.XYs, 0, nodes.Len())
}
for nodes.Next() { for nodes.Next() {
u := nodes.Node() u := nodes.Node()
uid := u.ID() uid := u.ID()
@@ -98,12 +107,16 @@ func (p render) GlyphBoxes(plt *plot.Plot) []plot.GlyphBox {
if nodes.Len() == 0 { if nodes.Len() == 0 {
return nil return nil
} }
b := make([]plot.GlyphBox, nodes.Len()) var b []plot.GlyphBox
if nodes.Len() >= 0 {
b = make([]plot.GlyphBox, 0, nodes.Len())
}
for i := 0; nodes.Next(); i++ { for i := 0; nodes.Next(); i++ {
u := nodes.Node() u := nodes.Node()
uid := u.ID() uid := u.ID()
ur2 := p.GraphR2.LayoutNodeR2(uid) ur2 := p.GraphR2.LayoutNodeR2(uid)
b = append(b, plot.GlyphBox{})
b[i].X = plt.X.Norm(ur2.Coord2.X) b[i].X = plt.X.Norm(ur2.Coord2.X)
b[i].Y = plt.Y.Norm(ur2.Coord2.Y) b[i].Y = plt.Y.Norm(ur2.Coord2.Y)
r := radius r := radius

View File

@@ -56,28 +56,29 @@ type NodeSlicer interface {
// NodesOf returns it.Len() nodes from it. If it is a NodeSlicer, the NodeSlice method // NodesOf returns it.Len() nodes from it. If it is a NodeSlicer, the NodeSlice method
// is used to obtain the nodes. It is safe to pass a nil Nodes to NodesOf. // is used to obtain the nodes. It is safe to pass a nil Nodes to NodesOf.
//
// If the Nodes has an indeterminate length, NodesOf will panic.
func NodesOf(it Nodes) []Node { func NodesOf(it Nodes) []Node {
if it == nil { if it == nil {
return nil return nil
} }
len := it.Len() n := it.Len()
switch { switch {
case len == 0: case n == 0:
return nil return nil
case len < 0: case n < 0:
panic("graph: called NodesOf on indeterminate iterator") n = 0
} }
switch it := it.(type) { switch it := it.(type) {
case NodeSlicer: case NodeSlicer:
return it.NodeSlice() return it.NodeSlice()
} }
n := make([]Node, 0, len) nodes := make([]Node, 0, n)
for it.Next() { for it.Next() {
n = append(n, it.Node()) nodes = append(nodes, it.Node())
} }
return n if len(nodes) == 0 {
return nil
}
return nodes
} }
// Edges is an Edge iterator. // Edges is an Edge iterator.
@@ -101,28 +102,29 @@ type EdgeSlicer interface {
// EdgesOf returns it.Len() nodes from it. If it is an EdgeSlicer, the EdgeSlice method is used // EdgesOf returns it.Len() nodes from it. If it is an EdgeSlicer, the EdgeSlice method is used
// to obtain the edges. It is safe to pass a nil Edges to EdgesOf. // to obtain the edges. It is safe to pass a nil Edges to EdgesOf.
//
// If the Edges has an indeterminate length, EdgesOf will panic.
func EdgesOf(it Edges) []Edge { func EdgesOf(it Edges) []Edge {
if it == nil { if it == nil {
return nil return nil
} }
len := it.Len() n := it.Len()
switch { switch {
case len == 0: case n == 0:
return nil return nil
case len < 0: case n < 0:
panic("graph: called EdgesOf on indeterminate iterator") n = 0
} }
switch it := it.(type) { switch it := it.(type) {
case EdgeSlicer: case EdgeSlicer:
return it.EdgeSlice() return it.EdgeSlice()
} }
e := make([]Edge, 0, len) edges := make([]Edge, 0, n)
for it.Next() { for it.Next() {
e = append(e, it.Edge()) edges = append(edges, it.Edge())
} }
return e if len(edges) == 0 {
return nil
}
return edges
} }
// WeightedEdges is a WeightedEdge iterator. // WeightedEdges is a WeightedEdge iterator.
@@ -147,28 +149,29 @@ type WeightedEdgeSlicer interface {
// WeightedEdgesOf returns it.Len() weighted edge from it. If it is a WeightedEdgeSlicer, the // WeightedEdgesOf returns it.Len() weighted edge from it. If it is a WeightedEdgeSlicer, the
// WeightedEdgeSlice method is used to obtain the edges. It is safe to pass a nil WeightedEdges // WeightedEdgeSlice method is used to obtain the edges. It is safe to pass a nil WeightedEdges
// to WeightedEdgesOf. // to WeightedEdgesOf.
//
// If the WeightedEdges has an indeterminate length, WeightedEdgesOf will panic.
func WeightedEdgesOf(it WeightedEdges) []WeightedEdge { func WeightedEdgesOf(it WeightedEdges) []WeightedEdge {
if it == nil { if it == nil {
return nil return nil
} }
len := it.Len() n := it.Len()
switch { switch {
case len == 0: case n == 0:
return nil return nil
case len < 0: case n < 0:
panic("graph: called WeightedEdgesOf on indeterminate iterator") n = 0
} }
switch it := it.(type) { switch it := it.(type) {
case WeightedEdgeSlicer: case WeightedEdgeSlicer:
return it.WeightedEdgeSlice() return it.WeightedEdgeSlice()
} }
e := make([]WeightedEdge, 0, len) edges := make([]WeightedEdge, 0, n)
for it.Next() { for it.Next() {
e = append(e, it.WeightedEdge()) edges = append(edges, it.WeightedEdge())
} }
return e if len(edges) == 0 {
return nil
}
return edges
} }
// Lines is a Line iterator. // Lines is a Line iterator.
@@ -192,28 +195,29 @@ type LineSlicer interface {
// LinesOf returns it.Len() nodes from it. If it is a LineSlicer, the LineSlice method is used // LinesOf returns it.Len() nodes from it. If it is a LineSlicer, the LineSlice method is used
// to obtain the lines. It is safe to pass a nil Lines to LinesOf. // to obtain the lines. It is safe to pass a nil Lines to LinesOf.
//
// If the Lines has an indeterminate length, LinesOf will panic.
func LinesOf(it Lines) []Line { func LinesOf(it Lines) []Line {
if it == nil { if it == nil {
return nil return nil
} }
len := it.Len() n := it.Len()
switch { switch {
case len == 0: case n == 0:
return nil return nil
case len < 0: case n < 0:
panic("graph: called LinesOf on indeterminate iterator") n = 0
} }
switch it := it.(type) { switch it := it.(type) {
case LineSlicer: case LineSlicer:
return it.LineSlice() return it.LineSlice()
} }
l := make([]Line, 0, len) lines := make([]Line, 0, n)
for it.Next() { for it.Next() {
l = append(l, it.Line()) lines = append(lines, it.Line())
} }
return l if len(lines) == 0 {
return nil
}
return lines
} }
// WeightedLines is a WeightedLine iterator. // WeightedLines is a WeightedLine iterator.
@@ -238,28 +242,29 @@ type WeightedLineSlicer interface {
// WeightedLinesOf returns it.Len() weighted line from it. If it is a WeightedLineSlicer, the // WeightedLinesOf returns it.Len() weighted line from it. If it is a WeightedLineSlicer, the
// WeightedLineSlice method is used to obtain the lines. It is safe to pass a nil WeightedLines // WeightedLineSlice method is used to obtain the lines. It is safe to pass a nil WeightedLines
// to WeightedLinesOf. // to WeightedLinesOf.
//
// If the WeightedLines has an indeterminate length, WeightedLinesOf will panic.
func WeightedLinesOf(it WeightedLines) []WeightedLine { func WeightedLinesOf(it WeightedLines) []WeightedLine {
if it == nil { if it == nil {
return nil return nil
} }
len := it.Len() n := it.Len()
switch { switch {
case len == 0: case n == 0:
return nil return nil
case len < 0: case n < 0:
panic("graph: called WeightedLinesOf on indeterminate iterator") n = 0
} }
switch it := it.(type) { switch it := it.(type) {
case WeightedLineSlicer: case WeightedLineSlicer:
return it.WeightedLineSlice() return it.WeightedLineSlice()
} }
l := make([]WeightedLine, 0, len) lines := make([]WeightedLine, 0, n)
for it.Next() { for it.Next() {
l = append(l, it.WeightedLine()) lines = append(lines, it.WeightedLine())
} }
return l if len(lines) == 0 {
return nil
}
return lines
} }
// Empty is an empty set of nodes, edges or lines. It should be used when // Empty is an empty set of nodes, edges or lines. It should be used when

View File

@@ -194,8 +194,9 @@ func TestExhaustiveAStar(t *testing.T) {
} }
ps := DijkstraAllPaths(g) ps := DijkstraAllPaths(g)
for _, start := range graph.NodesOf(g.Nodes()) { ends := graph.NodesOf(g.Nodes())
for _, goal := range graph.NodesOf(g.Nodes()) { for _, start := range ends {
for _, goal := range ends {
pt, _ := AStar(start, goal, g, heuristic) pt, _ := AStar(start, goal, g, heuristic)
gotPath, gotWeight := pt.To(goal.ID()) gotPath, gotWeight := pt.To(goal.ID())
wantPath, wantWeight, _ := ps.Between(start.ID(), goal.ID()) wantPath, wantWeight, _ := ps.Between(start.ID(), goal.ID())

View File

@@ -401,9 +401,10 @@ var dynamicDStarLiteTests = []struct {
l.Known[l.NodeAt(wallRow, wallCol).ID()] = false l.Known[l.NodeAt(wallRow, wallCol).ID()] = false
// Check we have a correctly modified representation. // Check we have a correctly modified representation.
for _, u := range graph.NodesOf(l.Nodes()) { nodes := graph.NodesOf(l.Nodes())
for _, u := range nodes {
uid := u.ID() uid := u.ID()
for _, v := range graph.NodesOf(l.Nodes()) { for _, v := range nodes {
vid := v.ID() vid := v.ID()
if l.HasEdgeBetween(uid, vid) != l.Grid.HasEdgeBetween(uid, vid) { if l.HasEdgeBetween(uid, vid) != l.Grid.HasEdgeBetween(uid, vid) {
ur, uc := l.RowCol(uid) ur, uc := l.RowCol(uid)

View File

@@ -1167,11 +1167,12 @@ func TestLimitedVisionGrid(t *testing.T) {
l.Grid.AllowDiagonal = test.diag l.Grid.AllowDiagonal = test.diag
x, y := l.XY(test.path[0].ID()) x, y := l.XY(test.path[0].ID())
for _, u := range graph.NodesOf(l.Nodes()) { nodes := graph.NodesOf(l.Nodes())
for _, u := range nodes {
uid := u.ID() uid := u.ID()
ux, uy := l.XY(uid) ux, uy := l.XY(uid)
uNear := math.Hypot(x-ux, y-uy) <= test.radius uNear := math.Hypot(x-ux, y-uy) <= test.radius
for _, v := range graph.NodesOf(l.Nodes()) { for _, v := range nodes {
vid := v.ID() vid := v.ID()
vx, vy := l.XY(vid) vx, vy := l.XY(vid)
vNear := math.Hypot(x-vx, y-vy) <= test.radius vNear := math.Hypot(x-vx, y-vy) <= test.radius

View File

@@ -152,6 +152,9 @@ func (it *johnsonNodeIterator) Len() int {
var len int var len int
if it.nodes != nil { if it.nodes != nil {
len = it.nodes.Len() len = it.nodes.Len()
if len < 0 {
return len
}
} }
if !it.qUsed { if !it.qUsed {
len++ len++

View File

@@ -86,11 +86,11 @@ func TestCartesian(t *testing.T) {
naiveCartesian(want, test.a, test.b) naiveCartesian(want, test.a, test.b)
wantBytes, _ := dot.Marshal(want, "", "", " ") wantBytes, _ := dot.Marshal(want, "", "", " ")
gotEdgesLen := got.Edges().Len() gotEdgesLen := len(graph.EdgesOf(got.Edges()))
nA := test.a.Nodes().Len() nA := len(graph.NodesOf(test.a.Nodes()))
mA := test.a.Edges().Len() mA := len(graph.EdgesOf(test.a.Edges()))
nB := test.b.Nodes().Len() nB := len(graph.NodesOf(test.b.Nodes()))
mB := test.b.Edges().Len() mB := len(graph.EdgesOf(test.b.Edges()))
wantEdgesLen := mB*nA + mA*nB wantEdgesLen := mB*nA + mA*nB
if gotEdgesLen != wantEdgesLen { if gotEdgesLen != wantEdgesLen {
t.Errorf("unexpected number of edges for Cartesian product of %s: got:%d want:%d", t.Errorf("unexpected number of edges for Cartesian product of %s: got:%d want:%d",
@@ -133,9 +133,9 @@ func TestTensor(t *testing.T) {
naiveTensor(want, test.a, test.b) naiveTensor(want, test.a, test.b)
wantBytes, _ := dot.Marshal(want, "", "", " ") wantBytes, _ := dot.Marshal(want, "", "", " ")
gotEdgesLen := got.Edges().Len() gotEdgesLen := len(graph.EdgesOf(got.Edges()))
mA := test.a.Edges().Len() mA := len(graph.EdgesOf(test.a.Edges()))
mB := test.b.Edges().Len() mB := len(graph.EdgesOf(test.b.Edges()))
wantEdgesLen := 2 * mA * mB wantEdgesLen := 2 * mA * mB
if gotEdgesLen != wantEdgesLen { if gotEdgesLen != wantEdgesLen {
t.Errorf("unexpected number of edges for Tensor product of %s: got:%d want:%d", t.Errorf("unexpected number of edges for Tensor product of %s: got:%d want:%d",
@@ -178,11 +178,11 @@ func TestLexicographical(t *testing.T) {
naiveLexicographical(want, test.a, test.b) naiveLexicographical(want, test.a, test.b)
wantBytes, _ := dot.Marshal(want, "", "", " ") wantBytes, _ := dot.Marshal(want, "", "", " ")
gotEdgesLen := got.Edges().Len() gotEdgesLen := len(graph.EdgesOf(got.Edges()))
nA := test.a.Nodes().Len() nA := len(graph.NodesOf(test.a.Nodes()))
mA := test.a.Edges().Len() mA := len(graph.EdgesOf(test.a.Edges()))
nB := test.b.Nodes().Len() nB := len(graph.NodesOf(test.b.Nodes()))
mB := test.b.Edges().Len() mB := len(graph.EdgesOf(test.b.Edges()))
wantEdgesLen := mB*nA + mA*nB*nB wantEdgesLen := mB*nA + mA*nB*nB
if gotEdgesLen != wantEdgesLen { if gotEdgesLen != wantEdgesLen {
t.Errorf("unexpected number of edges for Lexicographical product of %s: got:%d want:%d", t.Errorf("unexpected number of edges for Lexicographical product of %s: got:%d want:%d",
@@ -225,11 +225,11 @@ func TestStrong(t *testing.T) {
naiveStrong(want, test.a, test.b) naiveStrong(want, test.a, test.b)
wantBytes, _ := dot.Marshal(want, "", "", " ") wantBytes, _ := dot.Marshal(want, "", "", " ")
gotEdgesLen := got.Edges().Len() gotEdgesLen := len(graph.EdgesOf(got.Edges()))
nA := test.a.Nodes().Len() nA := len(graph.NodesOf(test.a.Nodes()))
mA := test.a.Edges().Len() mA := len(graph.EdgesOf(test.a.Edges()))
nB := test.b.Nodes().Len() nB := len(graph.NodesOf(test.b.Nodes()))
mB := test.b.Edges().Len() mB := len(graph.EdgesOf(test.b.Edges()))
wantEdgesLen := nA*mB + nB*mA + 2*mA*mB wantEdgesLen := nA*mB + nB*mA + 2*mA*mB
if gotEdgesLen != wantEdgesLen { if gotEdgesLen != wantEdgesLen {
t.Errorf("unexpected number of edges for Strong product of %s: got:%d want:%d", t.Errorf("unexpected number of edges for Strong product of %s: got:%d want:%d",

View File

@@ -84,7 +84,12 @@ func NewSymNormLaplacian(g graph.Undirected) Laplacian {
panic("network: self edge in graph") panic("network: self edge in graph")
} }
if uid < vid { if uid < vid {
l.SetSym(indexOf[vid], j, -1/(squdeg*math.Sqrt(float64(g.From(vid).Len())))) to := g.From(vid)
k := to.Len()
if k < 0 {
k = len(graph.NodesOf(to))
}
l.SetSym(indexOf[vid], j, -1/(squdeg*math.Sqrt(float64(k))))
} }
} }
} }

View File

@@ -1370,7 +1370,7 @@ func AddNodes(t *testing.T, g NodeAdder, n int) {
var addedNodes []graph.Node var addedNodes []graph.Node
for i := 0; i < n; i++ { for i := 0; i < n; i++ {
node := g.NewNode() node := g.NewNode()
prev := g.Nodes().Len() prev := len(graph.NodesOf(g.Nodes()))
if g.Node(node.ID()) != nil { if g.Node(node.ID()) != nil {
curr := g.Nodes().Len() curr := g.Nodes().Len()
if curr != prev { if curr != prev {
@@ -1380,7 +1380,7 @@ func AddNodes(t *testing.T, g NodeAdder, n int) {
} }
g.AddNode(node) g.AddNode(node)
addedNodes = append(addedNodes, node) addedNodes = append(addedNodes, node)
curr := g.Nodes().Len() curr := len(graph.NodesOf(g.Nodes()))
if curr != prev+1 { if curr != prev+1 {
t.Fatalf("AddNode failed to mutate graph: curr graph order != prev graph order+1, %d != %d", curr, prev+1) t.Fatalf("AddNode failed to mutate graph: curr graph order != prev graph order+1, %d != %d", curr, prev+1)
} }
@@ -1425,9 +1425,9 @@ func AddArbitraryNodes(t *testing.T, g NodeAdder, add graph.Nodes) {
for add.Next() { for add.Next() {
node := add.Node() node := add.Node()
prev := g.Nodes().Len() prev := len(graph.NodesOf(g.Nodes()))
g.AddNode(node) g.AddNode(node)
curr := g.Nodes().Len() curr := len(graph.NodesOf(g.Nodes()))
if curr != prev+1 { if curr != prev+1 {
t.Fatalf("AddNode failed to mutate graph: curr graph order != prev graph order+1, %d != %d", curr, prev+1) t.Fatalf("AddNode failed to mutate graph: curr graph order != prev graph order+1, %d != %d", curr, prev+1)
} }
@@ -1517,9 +1517,9 @@ func RemoveNodes(t *testing.T, g NodeRemover) {
} }
first = false first = false
prev := g.Nodes().Len() prev := len(graph.NodesOf(g.Nodes()))
g.RemoveNode(u.ID()) g.RemoveNode(u.ID())
curr := g.Nodes().Len() curr := len(graph.NodesOf(g.Nodes()))
if curr != prev-1 { if curr != prev-1 {
t.Fatalf("RemoveNode failed to mutate graph: curr graph order != prev graph order-1, %d != %d", curr, prev-1) t.Fatalf("RemoveNode failed to mutate graph: curr graph order != prev graph order-1, %d != %d", curr, prev-1)
} }