floats: imported floats as a subtree

This commit is contained in:
Brendan Tracey
2017-05-23 00:02:44 -06:00
6 changed files with 2406 additions and 0 deletions

23
floats/.travis.yml Normal file
View File

@@ -0,0 +1,23 @@
language: go
# Versions of go that are explicitly supported by gonum.
go:
- 1.5.4
- 1.6.3
- 1.7.3
# Required for coverage.
before_install:
- go get golang.org/x/tools/cmd/cover
- go get github.com/mattn/goveralls
# Get deps, build, test, and ensure the code is gofmt'ed.
# If we are building as gonum, then we have access to the coveralls api key, so we can run coverage as well.
script:
- go get -d -t -v ./...
- go build -a -v ./...
- go build -a -tags noasm -v ./...
- go test -a -v ./...
- go test -a -tags noasm -v ./...
- test -z "$(gofmt -d .)"
- if [[ $TRAVIS_SECURE_ENV_VARS = "true" ]]; then bash ./.travis/test-coverage.sh; fi

35
floats/.travis/test-coverage.sh Executable file
View File

@@ -0,0 +1,35 @@
#!/bin/bash
PROFILE_OUT=$PWD/profile.out
ACC_OUT=$PWD/acc.out
testCover() {
# set the return value to 0 (succesful)
retval=0
# get the directory to check from the parameter. Default to '.'
d=${1:-.}
# skip if there are no Go files here
ls $d/*.go &> /dev/null || return $retval
# switch to the directory to check
pushd $d > /dev/null
# create the coverage profile
coverageresult=`go test -v -coverprofile=$PROFILE_OUT`
# output the result so we can check the shell output
echo ${coverageresult}
# append the results to acc.out if coverage didn't fail, else set the retval to 1 (failed)
( [[ ${coverageresult} == *FAIL* ]] && retval=1 ) || ( [ -f $PROFILE_OUT ] && grep -v "mode: set" $PROFILE_OUT >> $ACC_OUT )
# return to our working dir
popd > /dev/null
# return our return value
return $retval
}
# Init acc.out
echo "mode: set" > $ACC_OUT
# Run test coverage on all directories containing go files
find . -maxdepth 10 -type d | while read d; do testCover $d || exit; done
# Upload the coverage profile to coveralls.io
[ -n "$COVERALLS_TOKEN" ] && goveralls -coverprofile=$ACC_OUT -service=travis-ci -repotoken $COVERALLS_TOKEN

13
floats/README.md Normal file
View File

@@ -0,0 +1,13 @@
# Gonum floats [![travis-build-status](https://travis-ci.org/gonum/floats.svg?branch=master)](https://travis-ci.org/gonum/floats) [![Coverage Status](https://coveralls.io/repos/gonum/floats/badge.svg?branch=master&service=github)](https://coveralls.io/github/gonum/floats?branch=master) [![GoDoc](https://godoc.org/github.com/gonum/floats?status.svg)](https://godoc.org/github.com/gonum/floats)
package floats provides a set of helper routines for dealing with slices of float64. The functions avoid allocations to allow for use within tight loops without garbage collection overhead.
## Issues
If you find any bugs, feel free to file an issue on the github issue tracker. Discussions on API changes, added features, code review, or similar requests are preferred on the gonum-dev Google Group.
https://groups.google.com/forum/#!forum/gonum-dev
## License
Please see github.com/gonum/license for general license information, contributors, authors, etc on the Gonum suite of packages.

104
floats/examples_test.go Normal file
View File

@@ -0,0 +1,104 @@
// Copyright 2013 The Gonum Authors. All rights reserved.
// Use of this code is governed by a BSD-style
// license that can be found in the LICENSE file
package floats
import (
"fmt"
)
// Set of examples for all the functions
func ExampleAdd_simple() {
// Adding three slices together. Note that
// the result is stored in the first slice
s1 := []float64{1, 2, 3, 4}
s2 := []float64{5, 6, 7, 8}
s3 := []float64{1, 1, 1, 1}
Add(s1, s2)
Add(s1, s3)
fmt.Println("s1 =", s1)
fmt.Println("s2 =", s2)
fmt.Println("s3 =", s3)
// Output:
// s1 = [7 9 11 13]
// s2 = [5 6 7 8]
// s3 = [1 1 1 1]
}
func ExampleAdd_newslice() {
// If one wants to store the result in a
// new container, just make a new slice
s1 := []float64{1, 2, 3, 4}
s2 := []float64{5, 6, 7, 8}
s3 := []float64{1, 1, 1, 1}
dst := make([]float64, len(s1))
AddTo(dst, s1, s2)
Add(dst, s3)
fmt.Println("dst =", dst)
fmt.Println("s1 =", s1)
fmt.Println("s2 =", s2)
fmt.Println("s3 =", s3)
// Output:
// dst = [7 9 11 13]
// s1 = [1 2 3 4]
// s2 = [5 6 7 8]
// s3 = [1 1 1 1]
}
func ExampleAdd_unequallengths() {
// If the lengths of the slices are unknown,
// use Eqlen to check
s1 := []float64{1, 2, 3}
s2 := []float64{5, 6, 7, 8}
eq := EqualLengths(s1, s2)
if eq {
Add(s1, s2)
} else {
fmt.Println("Unequal lengths")
}
// Output:
// Unequal lengths
}
func ExampleAddConst() {
s := []float64{1, -2, 3, -4}
c := 5.0
AddConst(c, s)
fmt.Println("s =", s)
// Output:
// s = [6 3 8 1]
}
func ExampleCumProd() {
s := []float64{1, -2, 3, -4}
dst := make([]float64, len(s))
CumProd(dst, s)
fmt.Println("dst =", dst)
fmt.Println("s =", s)
// Output:
// dst = [1 -2 -6 24]
// s = [1 -2 3 -4]
}
func ExampleCumSum() {
s := []float64{1, -2, 3, -4}
dst := make([]float64, len(s))
CumSum(dst, s)
fmt.Println("dst =", dst)
fmt.Println("s =", s)
// Output:
// dst = [1 -1 2 -2]
// s = [1 -2 3 -4]
}

763
floats/floats.go Normal file
View File

@@ -0,0 +1,763 @@
// Copyright 2013 The Gonum Authors. All rights reserved.
// Use of this code is governed by a BSD-style
// license that can be found in the LICENSE file
// Package floats provides a set of helper routines for dealing with slices
// of float64. The functions avoid allocations to allow for use within tight
// loops without garbage collection overhead.
//
// The convention used is that when a slice is being modified in place, it has
// the name dst.
package floats
import (
"errors"
"math"
"sort"
"github.com/gonum/internal/asm/f64"
)
// Add adds, element-wise, the elements of s and dst, and stores in dst.
// Panics if the lengths of dst and s do not match.
func Add(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: length of the slices do not match")
}
f64.AxpyUnitaryTo(dst, 1, s, dst)
}
// AddTo adds, element-wise, the elements of s and t and
// stores the result in dst. Panics if the lengths of s, t and dst do not match.
func AddTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic("floats: length of adders do not match")
}
if len(dst) != len(s) {
panic("floats: length of destination does not match length of adder")
}
f64.AxpyUnitaryTo(dst, 1, s, t)
return dst
}
// AddConst adds the scalar c to all of the values in dst.
func AddConst(c float64, dst []float64) {
for i := range dst {
dst[i] += c
}
}
// AddScaled performs dst = dst + alpha * s.
// It panics if the lengths of dst and s are not equal.
func AddScaled(dst []float64, alpha float64, s []float64) {
if len(dst) != len(s) {
panic("floats: length of destination and source to not match")
}
f64.AxpyUnitaryTo(dst, alpha, s, dst)
}
// AddScaledTo performs dst = y + alpha * s, where alpha is a scalar,
// and dst, y and s are all slices.
// It panics if the lengths of dst, y, and s are not equal.
//
// At the return of the function, dst[i] = y[i] + alpha * s[i]
func AddScaledTo(dst, y []float64, alpha float64, s []float64) []float64 {
if len(dst) != len(s) || len(dst) != len(y) {
panic("floats: lengths of slices do not match")
}
f64.AxpyUnitaryTo(dst, alpha, s, y)
return dst
}
// argsort is a helper that implements sort.Interface, as used by
// Argsort.
type argsort struct {
s []float64
inds []int
}
func (a argsort) Len() int {
return len(a.s)
}
func (a argsort) Less(i, j int) bool {
return a.s[i] < a.s[j]
}
func (a argsort) Swap(i, j int) {
a.s[i], a.s[j] = a.s[j], a.s[i]
a.inds[i], a.inds[j] = a.inds[j], a.inds[i]
}
// Argsort sorts the elements of s while tracking their original order.
// At the conclusion of Argsort, s will contain the original elements of s
// but sorted in increasing order, and inds will contain the original position
// of the elements in the slice such that dst[i] = origDst[inds[i]].
// It panics if the lengths of dst and inds do not match.
func Argsort(dst []float64, inds []int) {
if len(dst) != len(inds) {
panic("floats: length of inds does not match length of slice")
}
for i := range dst {
inds[i] = i
}
a := argsort{s: dst, inds: inds}
sort.Sort(a)
}
// Count applies the function f to every element of s and returns the number
// of times the function returned true.
func Count(f func(float64) bool, s []float64) int {
var n int
for _, val := range s {
if f(val) {
n++
}
}
return n
}
// CumProd finds the cumulative product of the first i elements in
// s and puts them in place into the ith element of the
// destination dst. A panic will occur if the lengths of arguments
// do not match.
//
// At the return of the function, dst[i] = s[i] * s[i-1] * s[i-2] * ...
func CumProd(dst, s []float64) []float64 {
if len(dst) != len(s) {
panic("floats: length of destination does not match length of the source")
}
if len(dst) == 0 {
return dst
}
return f64.CumProd(dst, s)
}
// CumSum finds the cumulative sum of the first i elements in
// s and puts them in place into the ith element of the
// destination dst. A panic will occur if the lengths of arguments
// do not match.
//
// At the return of the function, dst[i] = s[i] + s[i-1] + s[i-2] + ...
func CumSum(dst, s []float64) []float64 {
if len(dst) != len(s) {
panic("floats: length of destination does not match length of the source")
}
if len(dst) == 0 {
return dst
}
return f64.CumSum(dst, s)
}
// Distance computes the L-norm of s - t. See Norm for special cases.
// A panic will occur if the lengths of s and t do not match.
func Distance(s, t []float64, L float64) float64 {
if len(s) != len(t) {
panic("floats: slice lengths do not match")
}
if len(s) == 0 {
return 0
}
var norm float64
if L == 2 {
for i, v := range s {
diff := t[i] - v
norm = math.Hypot(norm, diff)
}
return norm
}
if L == 1 {
for i, v := range s {
norm += math.Abs(t[i] - v)
}
return norm
}
if math.IsInf(L, 1) {
for i, v := range s {
absDiff := math.Abs(t[i] - v)
if absDiff > norm {
norm = absDiff
}
}
return norm
}
for i, v := range s {
norm += math.Pow(math.Abs(t[i]-v), L)
}
return math.Pow(norm, 1/L)
}
// Div performs element-wise division dst / s
// and stores the value in dst. It panics if the
// lengths of s and t are not equal.
func Div(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: slice lengths do not match")
}
f64.Div(dst, s)
}
// DivTo performs element-wise division s / t
// and stores the value in dst. It panics if the
// lengths of s, t, and dst are not equal.
func DivTo(dst, s, t []float64) []float64 {
if len(s) != len(t) || len(dst) != len(t) {
panic("floats: slice lengths do not match")
}
return f64.DivTo(dst, s, t)
}
// Dot computes the dot product of s1 and s2, i.e.
// sum_{i = 1}^N s1[i]*s2[i].
// A panic will occur if lengths of arguments do not match.
func Dot(s1, s2 []float64) float64 {
if len(s1) != len(s2) {
panic("floats: lengths of the slices do not match")
}
return f64.DotUnitary(s1, s2)
}
// Equal returns true if the slices have equal lengths and
// all elements are numerically identical.
func Equal(s1, s2 []float64) bool {
if len(s1) != len(s2) {
return false
}
for i, val := range s1 {
if s2[i] != val {
return false
}
}
return true
}
// EqualApprox returns true if the slices have equal lengths and
// all element pairs have an absolute tolerance less than tol or a
// relative tolerance less than tol.
func EqualApprox(s1, s2 []float64, tol float64) bool {
if len(s1) != len(s2) {
return false
}
for i, a := range s1 {
if !EqualWithinAbsOrRel(a, s2[i], tol, tol) {
return false
}
}
return true
}
// EqualFunc returns true if the slices have the same lengths
// and the function returns true for all element pairs.
func EqualFunc(s1, s2 []float64, f func(float64, float64) bool) bool {
if len(s1) != len(s2) {
return false
}
for i, val := range s1 {
if !f(val, s2[i]) {
return false
}
}
return true
}
// EqualWithinAbs returns true if a and b have an absolute
// difference of less than tol.
func EqualWithinAbs(a, b, tol float64) bool {
return a == b || math.Abs(a-b) <= tol
}
const minNormalFloat64 = 2.2250738585072014e-308
// EqualWithinRel returns true if the difference between a and b
// is not greater than tol times the greater value.
func EqualWithinRel(a, b, tol float64) bool {
if a == b {
return true
}
delta := math.Abs(a - b)
if delta <= minNormalFloat64 {
return delta <= tol*minNormalFloat64
}
// We depend on the division in this relationship to identify
// infinities (we rely on the NaN to fail the test) otherwise
// we compare Infs of the same sign and evaluate Infs as equal
// independent of sign.
return delta/math.Max(math.Abs(a), math.Abs(b)) <= tol
}
// EqualWithinAbsOrRel returns true if a and b are equal to within
// the absolute tolerance.
func EqualWithinAbsOrRel(a, b, absTol, relTol float64) bool {
if EqualWithinAbs(a, b, absTol) {
return true
}
return EqualWithinRel(a, b, relTol)
}
// EqualWithinULP returns true if a and b are equal to within
// the specified number of floating point units in the last place.
func EqualWithinULP(a, b float64, ulp uint) bool {
if a == b {
return true
}
if math.IsNaN(a) || math.IsNaN(b) {
return false
}
if math.Signbit(a) != math.Signbit(b) {
return math.Float64bits(math.Abs(a))+math.Float64bits(math.Abs(b)) <= uint64(ulp)
}
return ulpDiff(math.Float64bits(a), math.Float64bits(b)) <= uint64(ulp)
}
func ulpDiff(a, b uint64) uint64 {
if a > b {
return a - b
}
return b - a
}
// EqualLengths returns true if all of the slices have equal length,
// and false otherwise. Returns true if there are no input slices.
func EqualLengths(slices ...[]float64) bool {
// This length check is needed: http://play.golang.org/p/sdty6YiLhM
if len(slices) == 0 {
return true
}
l := len(slices[0])
for i := 1; i < len(slices); i++ {
if len(slices[i]) != l {
return false
}
}
return true
}
// Find applies f to every element of s and returns the indices of the first
// k elements for which the f returns true, or all such elements
// if k < 0.
// Find will reslice inds to have 0 length, and will append
// found indices to inds.
// If k > 0 and there are fewer than k elements in s satisfying f,
// all of the found elements will be returned along with an error.
// At the return of the function, the input inds will be in an undetermined state.
func Find(inds []int, f func(float64) bool, s []float64, k int) ([]int, error) {
// inds is also returned to allow for calling with nil
// Reslice inds to have zero length
inds = inds[:0]
// If zero elements requested, can just return
if k == 0 {
return inds, nil
}
// If k < 0, return all of the found indices
if k < 0 {
for i, val := range s {
if f(val) {
inds = append(inds, i)
}
}
return inds, nil
}
// Otherwise, find the first k elements
nFound := 0
for i, val := range s {
if f(val) {
inds = append(inds, i)
nFound++
if nFound == k {
return inds, nil
}
}
}
// Finished iterating over the loop, which means k elements were not found
return inds, errors.New("floats: insufficient elements found")
}
// HasNaN returns true if the slice s has any values that are NaN and false
// otherwise.
func HasNaN(s []float64) bool {
for _, v := range s {
if math.IsNaN(v) {
return true
}
}
return false
}
// LogSpan returns a set of n equally spaced points in log space between,
// l and u where N is equal to len(dst). The first element of the
// resulting dst will be l and the final element of dst will be u.
// Panics if len(dst) < 2
// Note that this call will return NaNs if either l or u are negative, and
// will return all zeros if l or u is zero.
// Also returns the mutated slice dst, so that it can be used in range, like:
//
// for i, x := range LogSpan(dst, l, u) { ... }
func LogSpan(dst []float64, l, u float64) []float64 {
Span(dst, math.Log(l), math.Log(u))
for i := range dst {
dst[i] = math.Exp(dst[i])
}
return dst
}
// LogSumExp returns the log of the sum of the exponentials of the values in s.
// Panics if s is an empty slice.
func LogSumExp(s []float64) float64 {
// Want to do this in a numerically stable way which avoids
// overflow and underflow
// First, find the maximum value in the slice.
maxval := Max(s)
if math.IsInf(maxval, 0) {
// If it's infinity either way, the logsumexp will be infinity as well
// returning now avoids NaNs
return maxval
}
var lse float64
// Compute the sumexp part
for _, val := range s {
lse += math.Exp(val - maxval)
}
// Take the log and add back on the constant taken out
return math.Log(lse) + maxval
}
// Max returns the maximum value in the input slice. If the slice is empty, Max will panic.
func Max(s []float64) float64 {
return s[MaxIdx(s)]
}
// MaxIdx returns the index of the maximum value in the input slice. If several
// entries have the maximum value, the first such index is returned. If the slice
// is empty, MaxIdx will panic.
func MaxIdx(s []float64) int {
if len(s) == 0 {
panic("floats: zero slice length")
}
max := s[0]
var ind int
for i, v := range s {
if v > max {
max = v
ind = i
}
}
return ind
}
// Min returns the maximum value in the input slice. If the slice is empty, Min will panic.
func Min(s []float64) float64 {
return s[MinIdx(s)]
}
// MinIdx returns the index of the minimum value in the input slice. If several
// entries have the maximum value, the first such index is returned. If the slice
// is empty, MinIdx will panic.
func MinIdx(s []float64) int {
min := s[0]
var ind int
for i, v := range s {
if v < min {
min = v
ind = i
}
}
return ind
}
// Mul performs element-wise multiplication between dst
// and s and stores the value in dst. Panics if the
// lengths of s and t are not equal.
func Mul(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: slice lengths do not match")
}
for i, val := range s {
dst[i] *= val
}
}
// MulTo performs element-wise multiplication between s
// and t and stores the value in dst. Panics if the
// lengths of s, t, and dst are not equal.
func MulTo(dst, s, t []float64) []float64 {
if len(s) != len(t) || len(dst) != len(t) {
panic("floats: slice lengths do not match")
}
for i, val := range t {
dst[i] = val * s[i]
}
return dst
}
// Nearest returns the index of the element in s
// whose value is nearest to v. If several such
// elements exist, the lowest index is returned.
// Panics if len(s) == 0.
func Nearest(s []float64, v float64) int {
var ind int
dist := math.Abs(v - s[0])
for i, val := range s {
newDist := math.Abs(v - val)
if newDist < dist {
dist = newDist
ind = i
}
}
return ind
}
// NearestWithinSpan return the index of a hypothetical vector created
// by Span with length n and bounds l and u whose value is closest
// to v. NearestWithinSpan panics if u < l. If the value is greater than u or
// less than l, the function returns -1.
func NearestWithinSpan(n int, l, u float64, v float64) int {
if u < l {
panic("floats: upper bound greater than lower bound")
}
if v < l || v > u {
return -1
}
// Can't guarantee anything about exactly halfway between
// because of floating point weirdness.
return int((float64(n)-1)/(u-l)*(v-l) + 0.5)
}
// Norm returns the L norm of the slice S, defined as
// (sum_{i=1}^N s[i]^L)^{1/L}
// Special cases:
// L = math.Inf(1) gives the maximum absolute value.
// Does not correctly compute the zero norm (use Count).
func Norm(s []float64, L float64) float64 {
// Should this complain if L is not positive?
// Should this be done in log space for better numerical stability?
// would be more cost
// maybe only if L is high?
if len(s) == 0 {
return 0
}
if L == 2 {
twoNorm := math.Abs(s[0])
for i := 1; i < len(s); i++ {
twoNorm = math.Hypot(twoNorm, s[i])
}
return twoNorm
}
var norm float64
if L == 1 {
for _, val := range s {
norm += math.Abs(val)
}
return norm
}
if math.IsInf(L, 1) {
for _, val := range s {
norm = math.Max(norm, math.Abs(val))
}
return norm
}
for _, val := range s {
norm += math.Pow(math.Abs(val), L)
}
return math.Pow(norm, 1/L)
}
// Prod returns the product of the elements of the slice.
// Returns 1 if len(s) = 0.
func Prod(s []float64) float64 {
prod := 1.0
for _, val := range s {
prod *= val
}
return prod
}
// Reverse reverses the order of elements in the slice.
func Reverse(s []float64) {
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
s[i], s[j] = s[j], s[i]
}
}
// Round returns the half away from zero rounded value of x with prec precision.
//
// Special cases are:
// Round(±0) = +0
// Round(±Inf) = ±Inf
// Round(NaN) = NaN
func Round(x float64, prec int) float64 {
if x == 0 {
// Make sure zero is returned
// without the negative bit set.
return 0
}
// Fast path for positive precision on integers.
if prec >= 0 && x == math.Trunc(x) {
return x
}
pow := math.Pow10(prec)
intermed := x * pow
if math.IsInf(intermed, 0) {
return x
}
if x < 0 {
x = math.Ceil(intermed - 0.5)
} else {
x = math.Floor(intermed + 0.5)
}
if x == 0 {
return 0
}
return x / pow
}
// RoundEven returns the half even rounded value of x with prec precision.
//
// Special cases are:
// RoundEven(±0) = +0
// RoundEven(±Inf) = ±Inf
// RoundEven(NaN) = NaN
func RoundEven(x float64, prec int) float64 {
if x == 0 {
// Make sure zero is returned
// without the negative bit set.
return 0
}
// Fast path for positive precision on integers.
if prec >= 0 && x == math.Trunc(x) {
return x
}
pow := math.Pow10(prec)
intermed := x * pow
if math.IsInf(intermed, 0) {
return x
}
if isHalfway(intermed) {
correction, _ := math.Modf(math.Mod(intermed, 2))
intermed += correction
if intermed > 0 {
x = math.Floor(intermed)
} else {
x = math.Ceil(intermed)
}
} else {
if x < 0 {
x = math.Ceil(intermed - 0.5)
} else {
x = math.Floor(intermed + 0.5)
}
}
if x == 0 {
return 0
}
return x / pow
}
func isHalfway(x float64) bool {
_, frac := math.Modf(x)
frac = math.Abs(frac)
return frac == 0.5 || (math.Nextafter(frac, math.Inf(-1)) < 0.5 && math.Nextafter(frac, math.Inf(1)) > 0.5)
}
// Same returns true if the input slices have the same length and the all elements
// have the same value with NaN treated as the same.
func Same(s, t []float64) bool {
if len(s) != len(t) {
return false
}
for i, v := range s {
w := t[i]
if v != w && !math.IsNaN(v) && !math.IsNaN(w) {
return false
}
}
return true
}
// Scale multiplies every element in dst by the scalar c.
func Scale(c float64, dst []float64) {
if len(dst) > 0 {
f64.ScalUnitary(c, dst)
}
}
// Span returns a set of N equally spaced points between l and u, where N
// is equal to the length of the destination. The first element of the destination
// is l, the final element of the destination is u.
// Panics if len(dst) < 2.
//
// Also returns the mutated slice dst, so that it can be used in range expressions, like:
//
// for i, x := range Span(dst, l, u) { ... }
func Span(dst []float64, l, u float64) []float64 {
n := len(dst)
if n < 2 {
panic("floats: destination must have length >1")
}
step := (u - l) / float64(n-1)
for i := range dst {
dst[i] = l + step*float64(i)
}
return dst
}
// Sub subtracts, element-wise, the elements of s from dst. Panics if
// the lengths of dst and s do not match.
func Sub(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: length of the slices do not match")
}
f64.AxpyUnitaryTo(dst, -1, s, dst)
}
// SubTo subtracts, element-wise, the elements of t from s and
// stores the result in dst. Panics if the lengths of s, t and dst do not match.
func SubTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic("floats: length of subtractor and subtractee do not match")
}
if len(dst) != len(s) {
panic("floats: length of destination does not match length of subtractor")
}
f64.AxpyUnitaryTo(dst, -1, t, s)
return dst
}
// Sum returns the sum of the elements of the slice.
func Sum(s []float64) float64 {
var sum float64
for _, val := range s {
sum += val
}
return sum
}
// Within returns the first index i where s[i] <= v < s[i+1]. Within panics if:
// - len(s) < 2
// - s is not sorted
func Within(s []float64, v float64) int {
if len(s) < 2 {
panic("floats: slice length less than 2")
}
if !sort.Float64sAreSorted(s) {
panic("floats: input slice not sorted")
}
if v < s[0] || v >= s[len(s)-1] || math.IsNaN(v) {
return -1
}
for i, f := range s[1:] {
if v < f {
return i
}
}
return -1
}

1468
floats/floats_test.go Normal file

File diff suppressed because it is too large Load Diff