mirror of
https://github.com/gonum/gonum.git
synced 2025-10-20 21:59:25 +08:00
dsp/transform: new package and initial Hilbert transform
This commit is contained in:
6
dsp/transform/doc.go
Normal file
6
dsp/transform/doc.go
Normal file
@@ -0,0 +1,6 @@
|
||||
// Copyright ©2024 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package transform provides important transforms on signals used in digital signal processing.
|
||||
package transform // import "gonum.org/v1/gonum/dsp/transform"
|
76
dsp/transform/hilbert.go
Normal file
76
dsp/transform/hilbert.go
Normal file
@@ -0,0 +1,76 @@
|
||||
// Copyright ©2024 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package transform
|
||||
|
||||
import (
|
||||
"gonum.org/v1/gonum/dsp/fourier"
|
||||
)
|
||||
|
||||
// Hilbert implements an approximate Hilbert transform that allows calculation
|
||||
// of an approximate analytical signal of a real signal, and determine the
|
||||
// real envelope of a signal.
|
||||
type Hilbert struct {
|
||||
fft *fourier.CmplxFFT
|
||||
work []complex128
|
||||
}
|
||||
|
||||
// NewHilbert returns a new Hilbert transformer for signals of size n.
|
||||
// The transform is most efficient when n is a product of small primes.
|
||||
// n must not be less than one.
|
||||
func NewHilbert(n int) *Hilbert {
|
||||
return &Hilbert{
|
||||
fft: fourier.NewCmplxFFT(n),
|
||||
work: make([]complex128, n),
|
||||
}
|
||||
}
|
||||
|
||||
// Len returns the length of signals that are valid input for this Hilbert transform.
|
||||
func (h *Hilbert) Len() int {
|
||||
return len(h.work)
|
||||
}
|
||||
|
||||
// AnalyticSignal computes the analytical signal of a real signal, and stores
|
||||
// the result in the dst slice, returning it.
|
||||
//
|
||||
// If the dst slice is nil, a new slice will be created and returned. The dst slice
|
||||
// must be the same length as the input signal, otherwise the method will panic.
|
||||
func (h *Hilbert) AnalyticSignal(dst []complex128, signal []float64) []complex128 {
|
||||
if len(signal) != h.Len() {
|
||||
panic("transform: input signal length mismatch")
|
||||
}
|
||||
|
||||
if dst == nil {
|
||||
dst = make([]complex128, len(signal))
|
||||
} else if len(dst) != h.Len() {
|
||||
panic("transform: destination length mismatch")
|
||||
}
|
||||
|
||||
for i, v := range signal {
|
||||
h.work[i] = complex(v, 0)
|
||||
}
|
||||
|
||||
// Forward FFT of the signal.
|
||||
coeff := h.fft.Coefficients(dst, h.work)
|
||||
for i := range h.work {
|
||||
h.work[i] = 0
|
||||
}
|
||||
|
||||
// Multiply positive frequencies by 2, zero out negative frequencies.
|
||||
// However, leave dc unchanged (and nyquist when n%2 == 0).
|
||||
h.work[0] = coeff[0]
|
||||
for i, d := range coeff[1 : len(coeff)/2+1] {
|
||||
h.work[i+1] = d * 2
|
||||
}
|
||||
if len(coeff)%2 == 0 {
|
||||
h.work[len(coeff)/2] = coeff[len(coeff)/2]
|
||||
}
|
||||
|
||||
// Normalize the results so they have a similar amplitude to the input
|
||||
unnorm := h.fft.Sequence(dst, h.work)
|
||||
for i, u := range unnorm {
|
||||
unnorm[i] = u / complex(float64(len(unnorm)), 0)
|
||||
}
|
||||
return unnorm
|
||||
}
|
56
dsp/transform/hilbert_example_test.go
Normal file
56
dsp/transform/hilbert_example_test.go
Normal file
@@ -0,0 +1,56 @@
|
||||
// Copyright ©2024 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package transform
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math/cmplx"
|
||||
)
|
||||
|
||||
func ExampleHilbert_AnalyticSignal() {
|
||||
// Samples is a set of real amplitudes that make up a signal.
|
||||
samples := []float64{1, 0, 2, 0, 4, 0, 2, 0}
|
||||
|
||||
// Initialize a Hilbert transform and 'demodulate' to get the
|
||||
// analytic signal.
|
||||
// The result is the complex I/Q (In-Phase / Quadrature) demodulation
|
||||
// of the input signal.
|
||||
h := NewHilbert(len(samples))
|
||||
iqSamples := h.AnalyticSignal(nil, samples)
|
||||
|
||||
// We can compute the instantaneous amplitude of the signal
|
||||
// (or 'envelope') using absolute value. Analyzing the envelope
|
||||
// is an easy way to measure changes in amplitude over time in a
|
||||
// signal.
|
||||
envelope := make([]float64, len(samples))
|
||||
for ind, iq := range iqSamples {
|
||||
envelope[ind] = cmplx.Abs(iq)
|
||||
}
|
||||
|
||||
// We can also compute the instantaneous phase of each part of the
|
||||
// signal using the 4-quadrant arc-tangent. With multiple samples,
|
||||
// the instantaneous phase can be used to estimate instantaneous
|
||||
// frequency of a signal.
|
||||
phase := make([]float64, len(samples))
|
||||
for ind, iq := range iqSamples {
|
||||
phase[ind] = cmplx.Phase(iq)
|
||||
}
|
||||
|
||||
for i, iq := range iqSamples {
|
||||
fmt.Printf("ind=%d -> I=%.4f, Q=%.4f, envelope=%.4f, phase=%.4f\n",
|
||||
i, real(iq), imag(iq), envelope[i], phase[i])
|
||||
}
|
||||
|
||||
// Output:
|
||||
//
|
||||
// ind=0 -> I=1.0000, Q=0.0000, envelope=1.0000, phase=0.0000
|
||||
// ind=1 -> I=-0.0000, Q=-0.8107, envelope=0.8107, phase=-1.5708
|
||||
// ind=2 -> I=2.0000, Q=0.0000, envelope=2.0000, phase=0.0000
|
||||
// ind=3 -> I=-0.0000, Q=-1.3107, envelope=1.3107, phase=-1.5708
|
||||
// ind=4 -> I=4.0000, Q=0.0000, envelope=4.0000, phase=0.0000
|
||||
// ind=5 -> I=0.0000, Q=1.3107, envelope=1.3107, phase=1.5708
|
||||
// ind=6 -> I=2.0000, Q=0.0000, envelope=2.0000, phase=0.0000
|
||||
// ind=7 -> I=0.0000, Q=0.8107, envelope=0.8107, phase=1.5708
|
||||
}
|
57
dsp/transform/hilbert_test.go
Normal file
57
dsp/transform/hilbert_test.go
Normal file
@@ -0,0 +1,57 @@
|
||||
// Copyright ©2024 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package transform
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"gonum.org/v1/gonum/cmplxs"
|
||||
)
|
||||
|
||||
var hilbertAnalyticSignalTests = []struct {
|
||||
name string
|
||||
in []float64
|
||||
want []complex128
|
||||
}{
|
||||
{
|
||||
name: "zeros",
|
||||
in: []float64{0, 0, 0, 0},
|
||||
want: []complex128{0, 0, 0, 0}},
|
||||
{
|
||||
name: "whole_components",
|
||||
in: []float64{1, 2, 3, 4},
|
||||
want: []complex128{1 + 1i, 2 - 1i, 3 - 1i, 4 + 1i},
|
||||
},
|
||||
{
|
||||
name: "irrational_imaginary_components",
|
||||
in: []float64{1, 2, 3, 4, 5},
|
||||
want: []complex128{
|
||||
1 + 1.7013016167i,
|
||||
2 - 1.3763819204i,
|
||||
3 - 0.6498393924i,
|
||||
4 - 1.3763819204i,
|
||||
5 + 1.7013016167i,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
func TestHilbertAnalytic(t *testing.T) {
|
||||
const tol = 1e-10
|
||||
|
||||
for _, test := range hilbertAnalyticSignalTests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
h := NewHilbert(len(test.in))
|
||||
if h.Len() != len(test.in) {
|
||||
t.Errorf("unexpected Hilbert transform length: got:%d, want:%d", h.Len(), len(test.in))
|
||||
}
|
||||
|
||||
dst := make([]complex128, len(test.in))
|
||||
got := h.AnalyticSignal(dst, test.in)
|
||||
if !cmplxs.EqualApprox(got, test.want, tol) {
|
||||
t.Errorf("unexpected Hilbert transform result:\ngot: %v\nwant:%v", got, test.want)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user