dsp/transform: new package and initial Hilbert transform

This commit is contained in:
Robert Kleffner
2024-12-13 12:54:41 -07:00
committed by GitHub
parent c2ad6d4ef1
commit 0c3ed0bb60
4 changed files with 195 additions and 0 deletions

6
dsp/transform/doc.go Normal file
View File

@@ -0,0 +1,6 @@
// Copyright ©2024 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package transform provides important transforms on signals used in digital signal processing.
package transform // import "gonum.org/v1/gonum/dsp/transform"

76
dsp/transform/hilbert.go Normal file
View File

@@ -0,0 +1,76 @@
// Copyright ©2024 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package transform
import (
"gonum.org/v1/gonum/dsp/fourier"
)
// Hilbert implements an approximate Hilbert transform that allows calculation
// of an approximate analytical signal of a real signal, and determine the
// real envelope of a signal.
type Hilbert struct {
fft *fourier.CmplxFFT
work []complex128
}
// NewHilbert returns a new Hilbert transformer for signals of size n.
// The transform is most efficient when n is a product of small primes.
// n must not be less than one.
func NewHilbert(n int) *Hilbert {
return &Hilbert{
fft: fourier.NewCmplxFFT(n),
work: make([]complex128, n),
}
}
// Len returns the length of signals that are valid input for this Hilbert transform.
func (h *Hilbert) Len() int {
return len(h.work)
}
// AnalyticSignal computes the analytical signal of a real signal, and stores
// the result in the dst slice, returning it.
//
// If the dst slice is nil, a new slice will be created and returned. The dst slice
// must be the same length as the input signal, otherwise the method will panic.
func (h *Hilbert) AnalyticSignal(dst []complex128, signal []float64) []complex128 {
if len(signal) != h.Len() {
panic("transform: input signal length mismatch")
}
if dst == nil {
dst = make([]complex128, len(signal))
} else if len(dst) != h.Len() {
panic("transform: destination length mismatch")
}
for i, v := range signal {
h.work[i] = complex(v, 0)
}
// Forward FFT of the signal.
coeff := h.fft.Coefficients(dst, h.work)
for i := range h.work {
h.work[i] = 0
}
// Multiply positive frequencies by 2, zero out negative frequencies.
// However, leave dc unchanged (and nyquist when n%2 == 0).
h.work[0] = coeff[0]
for i, d := range coeff[1 : len(coeff)/2+1] {
h.work[i+1] = d * 2
}
if len(coeff)%2 == 0 {
h.work[len(coeff)/2] = coeff[len(coeff)/2]
}
// Normalize the results so they have a similar amplitude to the input
unnorm := h.fft.Sequence(dst, h.work)
for i, u := range unnorm {
unnorm[i] = u / complex(float64(len(unnorm)), 0)
}
return unnorm
}

View File

@@ -0,0 +1,56 @@
// Copyright ©2024 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package transform
import (
"fmt"
"math/cmplx"
)
func ExampleHilbert_AnalyticSignal() {
// Samples is a set of real amplitudes that make up a signal.
samples := []float64{1, 0, 2, 0, 4, 0, 2, 0}
// Initialize a Hilbert transform and 'demodulate' to get the
// analytic signal.
// The result is the complex I/Q (In-Phase / Quadrature) demodulation
// of the input signal.
h := NewHilbert(len(samples))
iqSamples := h.AnalyticSignal(nil, samples)
// We can compute the instantaneous amplitude of the signal
// (or 'envelope') using absolute value. Analyzing the envelope
// is an easy way to measure changes in amplitude over time in a
// signal.
envelope := make([]float64, len(samples))
for ind, iq := range iqSamples {
envelope[ind] = cmplx.Abs(iq)
}
// We can also compute the instantaneous phase of each part of the
// signal using the 4-quadrant arc-tangent. With multiple samples,
// the instantaneous phase can be used to estimate instantaneous
// frequency of a signal.
phase := make([]float64, len(samples))
for ind, iq := range iqSamples {
phase[ind] = cmplx.Phase(iq)
}
for i, iq := range iqSamples {
fmt.Printf("ind=%d -> I=%.4f, Q=%.4f, envelope=%.4f, phase=%.4f\n",
i, real(iq), imag(iq), envelope[i], phase[i])
}
// Output:
//
// ind=0 -> I=1.0000, Q=0.0000, envelope=1.0000, phase=0.0000
// ind=1 -> I=-0.0000, Q=-0.8107, envelope=0.8107, phase=-1.5708
// ind=2 -> I=2.0000, Q=0.0000, envelope=2.0000, phase=0.0000
// ind=3 -> I=-0.0000, Q=-1.3107, envelope=1.3107, phase=-1.5708
// ind=4 -> I=4.0000, Q=0.0000, envelope=4.0000, phase=0.0000
// ind=5 -> I=0.0000, Q=1.3107, envelope=1.3107, phase=1.5708
// ind=6 -> I=2.0000, Q=0.0000, envelope=2.0000, phase=0.0000
// ind=7 -> I=0.0000, Q=0.8107, envelope=0.8107, phase=1.5708
}

View File

@@ -0,0 +1,57 @@
// Copyright ©2024 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package transform
import (
"testing"
"gonum.org/v1/gonum/cmplxs"
)
var hilbertAnalyticSignalTests = []struct {
name string
in []float64
want []complex128
}{
{
name: "zeros",
in: []float64{0, 0, 0, 0},
want: []complex128{0, 0, 0, 0}},
{
name: "whole_components",
in: []float64{1, 2, 3, 4},
want: []complex128{1 + 1i, 2 - 1i, 3 - 1i, 4 + 1i},
},
{
name: "irrational_imaginary_components",
in: []float64{1, 2, 3, 4, 5},
want: []complex128{
1 + 1.7013016167i,
2 - 1.3763819204i,
3 - 0.6498393924i,
4 - 1.3763819204i,
5 + 1.7013016167i,
},
},
}
func TestHilbertAnalytic(t *testing.T) {
const tol = 1e-10
for _, test := range hilbertAnalyticSignalTests {
t.Run(test.name, func(t *testing.T) {
h := NewHilbert(len(test.in))
if h.Len() != len(test.in) {
t.Errorf("unexpected Hilbert transform length: got:%d, want:%d", h.Len(), len(test.in))
}
dst := make([]complex128, len(test.in))
got := h.AnalyticSignal(dst, test.in)
if !cmplxs.EqualApprox(got, test.want, tol) {
t.Errorf("unexpected Hilbert transform result:\ngot: %v\nwant:%v", got, test.want)
}
})
}
}