mirror of
https://github.com/gonum/gonum.git
synced 2025-10-13 02:43:59 +08:00
spatial/r3: add Jacobian
This commit is contained in:

committed by
GitHub

parent
177c87adcd
commit
0bc95eb1d3
@@ -267,3 +267,28 @@ func (m *Mat) Hessian(p, step Vec, field func(Vec) float64) {
|
||||
m.Set(2, 1, fyz)
|
||||
m.Set(2, 2, fzz)
|
||||
}
|
||||
|
||||
// Jacobian sets the receiver to the Jacobian matrix of the vector field at the point p,
|
||||
// approximated using finite differences with the given step sizes.
|
||||
// Jacobian expects the field's first order partial
|
||||
// derivatives are all continuous for correct results.
|
||||
func (m *Mat) Jacobian(p, step Vec, field func(Vec) Vec) {
|
||||
dx := Vec{X: step.X}
|
||||
dy := Vec{Y: step.Y}
|
||||
dz := Vec{Z: step.Z}
|
||||
|
||||
dfdx := Scale(0.5/step.X, Sub(field(Add(p, dx)), field(Sub(p, dx))))
|
||||
dfdy := Scale(0.5/step.Y, Sub(field(Add(p, dy)), field(Sub(p, dy))))
|
||||
dfdz := Scale(0.5/step.Z, Sub(field(Add(p, dz)), field(Sub(p, dz))))
|
||||
m.Set(0, 0, dfdx.X)
|
||||
m.Set(0, 1, dfdy.X)
|
||||
m.Set(0, 2, dfdz.X)
|
||||
|
||||
m.Set(1, 0, dfdx.Y)
|
||||
m.Set(1, 1, dfdy.Y)
|
||||
m.Set(1, 2, dfdz.Y)
|
||||
|
||||
m.Set(2, 0, dfdx.Z)
|
||||
m.Set(2, 1, dfdy.Z)
|
||||
m.Set(2, 2, dfdz.Z)
|
||||
}
|
||||
|
@@ -302,3 +302,24 @@ func TestMatHessian(t *testing.T) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestMatJacobian(t *testing.T) {
|
||||
const (
|
||||
tol = 1e-5
|
||||
h = 8e-4
|
||||
)
|
||||
step := Vec{X: h, Y: h, Z: h}
|
||||
rnd := rand.New(rand.NewSource(1))
|
||||
for _, test := range vectorFields {
|
||||
for i := 0; i < 1; i++ {
|
||||
p := randomVec(rnd)
|
||||
got := NewMat(nil)
|
||||
got.Jacobian(p, step, test.field)
|
||||
want := test.jacobian(p)
|
||||
if !mat.EqualApprox(got, want, tol) {
|
||||
t.Errorf("matrices not equal within tol\ngot: %v\nwant: %v",
|
||||
mat.Formatted(got), mat.Formatted(want))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -259,28 +259,47 @@ func TestRotate(t *testing.T) {
|
||||
var vectorFields = []struct {
|
||||
field func(Vec) Vec
|
||||
divergence func(Vec) float64
|
||||
jacobian func(Vec) *Mat
|
||||
}{
|
||||
{
|
||||
field: func(v Vec) Vec {
|
||||
// (x*y*z, y*z, z*x)
|
||||
return Vec{X: v.X * v.Y * v.Z, Y: v.Y * v.Z, Z: v.Z * v.X}
|
||||
},
|
||||
divergence: func(v Vec) float64 {
|
||||
return v.X + v.Y*v.Z + v.Z
|
||||
},
|
||||
jacobian: func(v Vec) *Mat {
|
||||
return NewMat([]float64{
|
||||
v.Y * v.Z, v.X * v.Z, v.X * v.Y,
|
||||
0, v.Z, v.Y,
|
||||
v.Z, 0, v.X,
|
||||
})
|
||||
},
|
||||
},
|
||||
{
|
||||
field: func(v Vec) Vec {
|
||||
// (x*y*z*cos(y), y*z+sin(x), z*x*sin(y))
|
||||
sx := math.Sin(v.X)
|
||||
sy, cy := math.Sincos(v.Y)
|
||||
return Vec{
|
||||
X: v.X * v.Y * v.Z * cy,
|
||||
Y: v.Y*v.Z + sx,
|
||||
Z: v.Z * v.X / sy,
|
||||
Z: v.Z * v.X * sy,
|
||||
}
|
||||
},
|
||||
divergence: func(v Vec) float64 {
|
||||
sy, cy := math.Sincos(v.Y)
|
||||
return v.X/sy + v.Y*v.Z*cy + v.Z
|
||||
return v.X*sy + v.Y*v.Z*cy + v.Z
|
||||
},
|
||||
jacobian: func(v Vec) *Mat {
|
||||
cx := math.Cos(v.X)
|
||||
sy, cy := math.Sincos(v.Y)
|
||||
return NewMat([]float64{
|
||||
v.Y * v.Z * cy, v.X*v.Z*cy - v.X*v.Y*v.Z*sy, v.X * v.Y * cy,
|
||||
cx, v.Z, v.Y,
|
||||
v.Z * sy, v.X * v.Z * cy, v.X * sy,
|
||||
})
|
||||
},
|
||||
},
|
||||
}
|
||||
|
Reference in New Issue
Block a user