stat/distuv: add chi distribution

This commit is contained in:
Dan Kortschak
2021-06-11 09:23:35 +09:30
parent 086421b9b6
commit 0acd6516a6
2 changed files with 223 additions and 0 deletions

124
stat/distuv/chi.go Normal file
View File

@@ -0,0 +1,124 @@
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distuv
import (
"math"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/mathext"
)
// Chi implements the χ distribution, a one parameter distribution
// with support on the positive numbers.
//
// The density function is given by
// 1/(2^{k/2-1} * Γ(k/2)) * x^{k - 1} * e^{-x^2/2}
//
// For more information, see https://en.wikipedia.org/wiki/Chi_distribution.
type Chi struct {
// K is the shape parameter, corresponding to the degrees of freedom. Must
// be greater than 0.
K float64
Src rand.Source
}
// CDF computes the value of the cumulative density function at x.
func (c Chi) CDF(x float64) float64 {
return mathext.GammaIncReg(c.K/2, (x*x)/2)
}
// Entropy returns the differential entropy of the distribution.
func (c Chi) Entropy() float64 {
lg, _ := math.Lgamma(c.K / 2)
return lg + 0.5*(c.K-math.Ln2-(c.K-1)*mathext.Digamma(c.K/2))
}
// ExKurtosis returns the excess kurtosis of the distribution.
func (c Chi) ExKurtosis() float64 {
v := c.Variance()
s := math.Sqrt(v)
return 2 / v * (1 - c.Mean()*s*c.Skewness() - v)
}
// LogProb computes the natural logarithm of the value of the probability
// density function at x.
func (c Chi) LogProb(x float64) float64 {
if x < 0 {
return math.Inf(-1)
}
lg, _ := math.Lgamma(c.K / 2)
return (c.K-1)*math.Log(x) - (x*x)/2 - (c.K/2-1)*math.Ln2 - lg
}
// Mean returns the mean of the probability distribution.
func (c Chi) Mean() float64 {
lg1, _ := math.Lgamma((c.K + 1) / 2)
lg, _ := math.Lgamma(c.K / 2)
return math.Sqrt2 * math.Exp(lg1-lg)
}
// Median returns the median of the distribution.
func (c Chi) Median() float64 {
return c.Quantile(0.5)
}
// Mode returns the mode of the distribution.
//
// Mode returns NaN if K is less than one.
func (c Chi) Mode() float64 {
return math.Sqrt(c.K - 1)
}
// NumParameters returns the number of parameters in the distribution.
func (c Chi) NumParameters() int {
return 1
}
// Prob computes the value of the probability density function at x.
func (c Chi) Prob(x float64) float64 {
return math.Exp(c.LogProb(x))
}
// Rand returns a random sample drawn from the distribution.
func (c Chi) Rand() float64 {
return math.Sqrt(Gamma{c.K / 2, 0.5, c.Src}.Rand())
}
// Quantile returns the inverse of the cumulative distribution function.
func (c Chi) Quantile(p float64) float64 {
if p < 0 || 1 < p {
panic(badPercentile)
}
return math.Sqrt(2 * mathext.GammaIncRegInv(0.5*c.K, p))
}
// Skewness returns the skewness of the distribution.
func (c Chi) Skewness() float64 {
v := c.Variance()
s := math.Sqrt(v)
return c.Mean() / (s * v) * (1 - 2*v)
}
// StdDev returns the standard deviation of the probability distribution.
func (c Chi) StdDev() float64 {
return math.Sqrt(c.Variance())
}
// Survival returns the survival function (complementary CDF) at x.
func (c Chi) Survival(x float64) float64 {
if x < 0 {
return 1
}
return mathext.GammaIncRegComp(0.5*c.K, 0.5*(x*x))
}
// Variance returns the variance of the probability distribution.
func (c Chi) Variance() float64 {
m := c.Mean()
return math.Max(0, c.K-m*m)
}

99
stat/distuv/chi_test.go Normal file
View File

@@ -0,0 +1,99 @@
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distuv
import (
"math"
"sort"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/floats/scalar"
)
func TestChiProb(t *testing.T) {
t.Parallel()
for _, test := range []struct {
x, k, want float64
}{
{10, 3, 1.538919725341288e-20},
{2.3, 3, 0.2997000593061405},
{0.8, 0.2, 0.1702707693447167},
} {
pdf := Chi{test.k, nil}.Prob(test.x)
if !scalar.EqualWithinAbsOrRel(pdf, test.want, 1e-10, 1e-10) {
t.Errorf("Pdf mismatch, x = %v, K = %v. Got %v, want %v", test.x, test.k, pdf, test.want)
}
}
}
func TestChiCDF(t *testing.T) {
t.Parallel()
for _, test := range []struct {
x, k, want float64
}{
// Values calculated with scipy.stats.chi.cdf
{0, 1, 0},
{0.01, 5, 5.319040436531812e-12},
{0.05, 3, 3.3220267268523235e-05},
{0.5, 2, 0.1175030974154046},
{0.95, 3, 0.17517554009157732},
{0.99, 5, 0.035845177452671864},
{1, 1, 0.6826894921370859},
{1.5, 4, 0.3101135068635068},
{10, 10, 1},
{25, 15, 1},
} {
cdf := Chi{test.k, nil}.CDF(test.x)
if !scalar.EqualWithinAbsOrRel(cdf, test.want, 1e-10, 1e-10) {
t.Errorf("CDF mismatch, x = %v, K = %v. Got %v, want %v", test.x, test.k, cdf, test.want)
}
}
}
func TestChi(t *testing.T) {
t.Parallel()
src := rand.New(rand.NewSource(1))
for i, b := range []Chi{
{3, src},
{1.5, src},
{0.9, src},
} {
testChi(t, b, i)
}
}
func testChi(t *testing.T, c Chi, i int) {
const (
tol = 1e-2
n = 1e6
bins = 50
)
x := make([]float64, n)
generateSamples(x, c)
sort.Float64s(x)
testRandLogProbContinuous(t, i, 0, x, c, tol, bins)
checkMean(t, i, x, c, tol)
checkMedian(t, i, x, c, tol)
checkVarAndStd(t, i, x, c, tol)
checkEntropy(t, i, x, c, tol)
checkExKurtosis(t, i, x, c, 7e-2)
checkProbContinuous(t, i, x, 0, math.Inf(1), c, 1e-5)
checkQuantileCDFSurvival(t, i, x, c, 1e-2)
expectedMode := math.Sqrt(c.K - 1)
if !scalar.Same(c.Mode(), expectedMode) {
t.Errorf("Mode is not equal to sqrt(k - 1). Got %v, want %v", c.Mode(), expectedMode)
}
if c.NumParameters() != 1 {
t.Errorf("NumParameters is not 1. Got %v", c.NumParameters())
}
survival := c.Survival(-0.00001)
if survival != 1 {
t.Errorf("Survival is not 1 for negative argument. Got %v", survival)
}
}