mirror of
https://github.com/gonum/gonum.git
synced 2025-10-16 20:20:41 +08:00
stat/distuv: add chi distribution
This commit is contained in:
124
stat/distuv/chi.go
Normal file
124
stat/distuv/chi.go
Normal file
@@ -0,0 +1,124 @@
|
|||||||
|
// Copyright ©2021 The Gonum Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
package distuv
|
||||||
|
|
||||||
|
import (
|
||||||
|
"math"
|
||||||
|
|
||||||
|
"golang.org/x/exp/rand"
|
||||||
|
|
||||||
|
"gonum.org/v1/gonum/mathext"
|
||||||
|
)
|
||||||
|
|
||||||
|
// Chi implements the χ distribution, a one parameter distribution
|
||||||
|
// with support on the positive numbers.
|
||||||
|
//
|
||||||
|
// The density function is given by
|
||||||
|
// 1/(2^{k/2-1} * Γ(k/2)) * x^{k - 1} * e^{-x^2/2}
|
||||||
|
//
|
||||||
|
// For more information, see https://en.wikipedia.org/wiki/Chi_distribution.
|
||||||
|
type Chi struct {
|
||||||
|
// K is the shape parameter, corresponding to the degrees of freedom. Must
|
||||||
|
// be greater than 0.
|
||||||
|
K float64
|
||||||
|
|
||||||
|
Src rand.Source
|
||||||
|
}
|
||||||
|
|
||||||
|
// CDF computes the value of the cumulative density function at x.
|
||||||
|
func (c Chi) CDF(x float64) float64 {
|
||||||
|
return mathext.GammaIncReg(c.K/2, (x*x)/2)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Entropy returns the differential entropy of the distribution.
|
||||||
|
func (c Chi) Entropy() float64 {
|
||||||
|
lg, _ := math.Lgamma(c.K / 2)
|
||||||
|
return lg + 0.5*(c.K-math.Ln2-(c.K-1)*mathext.Digamma(c.K/2))
|
||||||
|
}
|
||||||
|
|
||||||
|
// ExKurtosis returns the excess kurtosis of the distribution.
|
||||||
|
func (c Chi) ExKurtosis() float64 {
|
||||||
|
v := c.Variance()
|
||||||
|
s := math.Sqrt(v)
|
||||||
|
return 2 / v * (1 - c.Mean()*s*c.Skewness() - v)
|
||||||
|
}
|
||||||
|
|
||||||
|
// LogProb computes the natural logarithm of the value of the probability
|
||||||
|
// density function at x.
|
||||||
|
func (c Chi) LogProb(x float64) float64 {
|
||||||
|
if x < 0 {
|
||||||
|
return math.Inf(-1)
|
||||||
|
}
|
||||||
|
lg, _ := math.Lgamma(c.K / 2)
|
||||||
|
return (c.K-1)*math.Log(x) - (x*x)/2 - (c.K/2-1)*math.Ln2 - lg
|
||||||
|
}
|
||||||
|
|
||||||
|
// Mean returns the mean of the probability distribution.
|
||||||
|
func (c Chi) Mean() float64 {
|
||||||
|
lg1, _ := math.Lgamma((c.K + 1) / 2)
|
||||||
|
lg, _ := math.Lgamma(c.K / 2)
|
||||||
|
return math.Sqrt2 * math.Exp(lg1-lg)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Median returns the median of the distribution.
|
||||||
|
func (c Chi) Median() float64 {
|
||||||
|
return c.Quantile(0.5)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Mode returns the mode of the distribution.
|
||||||
|
//
|
||||||
|
// Mode returns NaN if K is less than one.
|
||||||
|
func (c Chi) Mode() float64 {
|
||||||
|
return math.Sqrt(c.K - 1)
|
||||||
|
}
|
||||||
|
|
||||||
|
// NumParameters returns the number of parameters in the distribution.
|
||||||
|
func (c Chi) NumParameters() int {
|
||||||
|
return 1
|
||||||
|
}
|
||||||
|
|
||||||
|
// Prob computes the value of the probability density function at x.
|
||||||
|
func (c Chi) Prob(x float64) float64 {
|
||||||
|
return math.Exp(c.LogProb(x))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Rand returns a random sample drawn from the distribution.
|
||||||
|
func (c Chi) Rand() float64 {
|
||||||
|
return math.Sqrt(Gamma{c.K / 2, 0.5, c.Src}.Rand())
|
||||||
|
}
|
||||||
|
|
||||||
|
// Quantile returns the inverse of the cumulative distribution function.
|
||||||
|
func (c Chi) Quantile(p float64) float64 {
|
||||||
|
if p < 0 || 1 < p {
|
||||||
|
panic(badPercentile)
|
||||||
|
}
|
||||||
|
return math.Sqrt(2 * mathext.GammaIncRegInv(0.5*c.K, p))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Skewness returns the skewness of the distribution.
|
||||||
|
func (c Chi) Skewness() float64 {
|
||||||
|
v := c.Variance()
|
||||||
|
s := math.Sqrt(v)
|
||||||
|
return c.Mean() / (s * v) * (1 - 2*v)
|
||||||
|
}
|
||||||
|
|
||||||
|
// StdDev returns the standard deviation of the probability distribution.
|
||||||
|
func (c Chi) StdDev() float64 {
|
||||||
|
return math.Sqrt(c.Variance())
|
||||||
|
}
|
||||||
|
|
||||||
|
// Survival returns the survival function (complementary CDF) at x.
|
||||||
|
func (c Chi) Survival(x float64) float64 {
|
||||||
|
if x < 0 {
|
||||||
|
return 1
|
||||||
|
}
|
||||||
|
return mathext.GammaIncRegComp(0.5*c.K, 0.5*(x*x))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Variance returns the variance of the probability distribution.
|
||||||
|
func (c Chi) Variance() float64 {
|
||||||
|
m := c.Mean()
|
||||||
|
return math.Max(0, c.K-m*m)
|
||||||
|
}
|
99
stat/distuv/chi_test.go
Normal file
99
stat/distuv/chi_test.go
Normal file
@@ -0,0 +1,99 @@
|
|||||||
|
// Copyright ©2021 The Gonum Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
package distuv
|
||||||
|
|
||||||
|
import (
|
||||||
|
"math"
|
||||||
|
"sort"
|
||||||
|
"testing"
|
||||||
|
|
||||||
|
"golang.org/x/exp/rand"
|
||||||
|
|
||||||
|
"gonum.org/v1/gonum/floats/scalar"
|
||||||
|
)
|
||||||
|
|
||||||
|
func TestChiProb(t *testing.T) {
|
||||||
|
t.Parallel()
|
||||||
|
for _, test := range []struct {
|
||||||
|
x, k, want float64
|
||||||
|
}{
|
||||||
|
{10, 3, 1.538919725341288e-20},
|
||||||
|
{2.3, 3, 0.2997000593061405},
|
||||||
|
{0.8, 0.2, 0.1702707693447167},
|
||||||
|
} {
|
||||||
|
pdf := Chi{test.k, nil}.Prob(test.x)
|
||||||
|
if !scalar.EqualWithinAbsOrRel(pdf, test.want, 1e-10, 1e-10) {
|
||||||
|
t.Errorf("Pdf mismatch, x = %v, K = %v. Got %v, want %v", test.x, test.k, pdf, test.want)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestChiCDF(t *testing.T) {
|
||||||
|
t.Parallel()
|
||||||
|
for _, test := range []struct {
|
||||||
|
x, k, want float64
|
||||||
|
}{
|
||||||
|
// Values calculated with scipy.stats.chi.cdf
|
||||||
|
{0, 1, 0},
|
||||||
|
{0.01, 5, 5.319040436531812e-12},
|
||||||
|
{0.05, 3, 3.3220267268523235e-05},
|
||||||
|
{0.5, 2, 0.1175030974154046},
|
||||||
|
{0.95, 3, 0.17517554009157732},
|
||||||
|
{0.99, 5, 0.035845177452671864},
|
||||||
|
{1, 1, 0.6826894921370859},
|
||||||
|
{1.5, 4, 0.3101135068635068},
|
||||||
|
{10, 10, 1},
|
||||||
|
{25, 15, 1},
|
||||||
|
} {
|
||||||
|
cdf := Chi{test.k, nil}.CDF(test.x)
|
||||||
|
if !scalar.EqualWithinAbsOrRel(cdf, test.want, 1e-10, 1e-10) {
|
||||||
|
t.Errorf("CDF mismatch, x = %v, K = %v. Got %v, want %v", test.x, test.k, cdf, test.want)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestChi(t *testing.T) {
|
||||||
|
t.Parallel()
|
||||||
|
src := rand.New(rand.NewSource(1))
|
||||||
|
for i, b := range []Chi{
|
||||||
|
{3, src},
|
||||||
|
{1.5, src},
|
||||||
|
{0.9, src},
|
||||||
|
} {
|
||||||
|
testChi(t, b, i)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func testChi(t *testing.T, c Chi, i int) {
|
||||||
|
const (
|
||||||
|
tol = 1e-2
|
||||||
|
n = 1e6
|
||||||
|
bins = 50
|
||||||
|
)
|
||||||
|
x := make([]float64, n)
|
||||||
|
generateSamples(x, c)
|
||||||
|
sort.Float64s(x)
|
||||||
|
|
||||||
|
testRandLogProbContinuous(t, i, 0, x, c, tol, bins)
|
||||||
|
checkMean(t, i, x, c, tol)
|
||||||
|
checkMedian(t, i, x, c, tol)
|
||||||
|
checkVarAndStd(t, i, x, c, tol)
|
||||||
|
checkEntropy(t, i, x, c, tol)
|
||||||
|
checkExKurtosis(t, i, x, c, 7e-2)
|
||||||
|
checkProbContinuous(t, i, x, 0, math.Inf(1), c, 1e-5)
|
||||||
|
checkQuantileCDFSurvival(t, i, x, c, 1e-2)
|
||||||
|
|
||||||
|
expectedMode := math.Sqrt(c.K - 1)
|
||||||
|
if !scalar.Same(c.Mode(), expectedMode) {
|
||||||
|
t.Errorf("Mode is not equal to sqrt(k - 1). Got %v, want %v", c.Mode(), expectedMode)
|
||||||
|
}
|
||||||
|
if c.NumParameters() != 1 {
|
||||||
|
t.Errorf("NumParameters is not 1. Got %v", c.NumParameters())
|
||||||
|
}
|
||||||
|
survival := c.Survival(-0.00001)
|
||||||
|
if survival != 1 {
|
||||||
|
t.Errorf("Survival is not 1 for negative argument. Got %v", survival)
|
||||||
|
}
|
||||||
|
}
|
Reference in New Issue
Block a user