mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00
lapack/testlapack: change isIdentity to distFromIdentity
This commit is contained in:

committed by
Vladimír Chalupecký

parent
54df3f38fd
commit
08d9e7ed28
@@ -19,6 +19,7 @@ type Dgetrier interface {
|
||||
}
|
||||
|
||||
func DgetriTest(t *testing.T, impl Dgetrier) {
|
||||
const tol = 1e-13
|
||||
rnd := rand.New(rand.NewSource(1))
|
||||
bi := blas64.Implementation()
|
||||
for _, test := range []struct {
|
||||
@@ -28,8 +29,11 @@ func DgetriTest(t *testing.T, impl Dgetrier) {
|
||||
{5, 8},
|
||||
{45, 0},
|
||||
{45, 50},
|
||||
{63, 70},
|
||||
{64, 70},
|
||||
{65, 0},
|
||||
{65, 70},
|
||||
{66, 70},
|
||||
{150, 0},
|
||||
{150, 250},
|
||||
} {
|
||||
@@ -67,8 +71,9 @@ func DgetriTest(t *testing.T, impl Dgetrier) {
|
||||
ans := make([]float64, len(a))
|
||||
bi.Dgemm(blas.NoTrans, blas.NoTrans, n, n, n, 1, aCopy, lda, a, lda, 0, ans, lda)
|
||||
// The tolerance is so high because computing matrix inverses is very unstable.
|
||||
if !isIdentity(n, ans, lda, 5e-2) {
|
||||
t.Errorf("Inv(A) * A != I. n = %v, lda = %v", n, lda)
|
||||
dist := distFromIdentity(n, ans, lda)
|
||||
if dist > tol {
|
||||
t.Errorf("|Inv(A) * A - I|_inf = %v is too large. n = %v, lda = %v", dist, n, lda)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -104,8 +104,9 @@ func DlarfgTest(t *testing.T, impl Dlarfger) {
|
||||
Data: make([]float64, n*n),
|
||||
}
|
||||
blas64.Gemm(blas.Trans, blas.NoTrans, 1, hmat, hmat, 0, eye)
|
||||
if !isIdentity(n, eye.Data, n, 1e-14) {
|
||||
t.Errorf("H^T * H is not I %v", eye)
|
||||
dist := distFromIdentity(n, eye.Data, n)
|
||||
if dist > 1e-14 {
|
||||
t.Errorf("H^T * H is not close to I, dist=%v", dist)
|
||||
}
|
||||
|
||||
xVec := blas64.Vector{
|
||||
|
@@ -97,9 +97,10 @@ func DpotriTest(t *testing.T, impl Dpotrier) {
|
||||
want := make([]float64, n*ldwant)
|
||||
bi.Dsymm(blas.Left, uplo, n, n, 1, aCopy, lda, ainv, ldainv, 0, want, ldwant)
|
||||
|
||||
// Check that want is the identity matrix.
|
||||
if !isIdentity(n, want, ldwant, tol) {
|
||||
t.Errorf("%v: A * inv(A) != I", prefix)
|
||||
// Check that want is close to the identity matrix.
|
||||
dist := distFromIdentity(n, want, ldwant)
|
||||
if dist > tol {
|
||||
t.Errorf("%v: |A * inv(A) - I| = %v is too large", prefix, dist)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -147,9 +147,10 @@ func Dtrti2Test(t *testing.T, impl Dtrti2er) {
|
||||
// Compute A^{-1} * A and store the result in ans.
|
||||
ans := make([]float64, len(a))
|
||||
bi.Dgemm(blas.NoTrans, blas.NoTrans, n, n, n, 1, a, lda, aCopy, lda, 0, ans, lda)
|
||||
// Check that ans is the identity matrix.
|
||||
if !isIdentity(n, ans, lda, tol) {
|
||||
t.Errorf("inv(A) * A != I. Upper = %v, unit = %v, ans = %v", uplo == blas.Upper, diag == blas.Unit, ans)
|
||||
// Check that ans is close to the identity matrix.
|
||||
dist := distFromIdentity(n, ans, lda)
|
||||
if dist > tol {
|
||||
t.Errorf("|inv(A) * A - I| = %v. Upper = %v, unit = %v, ans = %v", dist, uplo == blas.Upper, diag == blas.Unit, ans)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -79,9 +79,10 @@ func DtrtriTest(t *testing.T, impl Dtrtrier) {
|
||||
ans := make([]float64, len(a))
|
||||
bi.Dgemm(blas.NoTrans, blas.NoTrans, n, n, n, 1, a, lda, aCopy, lda, 0, ans, lda)
|
||||
// Check that ans is the identity matrix.
|
||||
if !isIdentity(n, ans, lda, tol) {
|
||||
t.Errorf("inv(A) * A != I. Upper = %v, unit = %v, n = %v, lda = %v",
|
||||
uplo == blas.Upper, diag == blas.Unit, n, lda)
|
||||
dist := distFromIdentity(n, ans, lda)
|
||||
if dist > tol {
|
||||
t.Errorf("|inv(A) * A - I| = %v is too large. Upper = %v, unit = %v, n = %v, lda = %v",
|
||||
dist, uplo == blas.Upper, diag == blas.Unit, n, lda)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -1465,29 +1465,24 @@ func constructGSVPresults(n, p, m, k, l int, a, b blas64.General) (zeroA, zeroB
|
||||
return zeroA, zeroB
|
||||
}
|
||||
|
||||
// isIdentity returns whether an n×n matrix A is approximately equal to the
|
||||
// identity matrix.
|
||||
func isIdentity(n int, a []float64, lda int, tol float64) bool {
|
||||
// distFromIdentity returns the L-infinity distance of an n×n matrix A from the
|
||||
// identity. If A contains NaN elements, distFromIdentity will return +inf.
|
||||
func distFromIdentity(n int, a []float64, lda int) float64 {
|
||||
var dist float64
|
||||
for i := 0; i < n; i++ {
|
||||
for j := 0; j < n; j++ {
|
||||
aij := a[i*lda+j]
|
||||
if math.IsNaN(aij) {
|
||||
return false
|
||||
return math.Inf(1)
|
||||
}
|
||||
if i == j {
|
||||
if math.Abs(aij-1) > tol {
|
||||
fmt.Println(i, j, aij)
|
||||
return false
|
||||
}
|
||||
dist = math.Max(dist, math.Abs(aij-1))
|
||||
} else {
|
||||
if math.Abs(aij) > tol {
|
||||
fmt.Println(i, j, aij)
|
||||
return false
|
||||
dist = math.Max(dist, math.Abs(aij))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return true
|
||||
return dist
|
||||
}
|
||||
|
||||
func sameFloat64(a, b float64) bool {
|
||||
|
@@ -32,8 +32,9 @@ func TestDlagsy(t *testing.T) {
|
||||
Dlagsy(n, 0, d, a, lda, rnd, work)
|
||||
// A should be the identity matrix because
|
||||
// A = U * D * U^T = U * I * U^T = U * U^T = I.
|
||||
if !isIdentity(n, a, lda, tol) {
|
||||
t.Errorf("Case n=%v,lda=%v: unexpected result", n, lda)
|
||||
dist := distFromIdentity(n, a, lda)
|
||||
if dist > tol {
|
||||
t.Errorf("Case n=%v,lda=%v: |A-I|=%v is too large", n, lda, dist)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user