mirror of
https://github.com/esimov/forensic.git
synced 2025-09-26 20:41:40 +08:00
441 lines
12 KiB
Go
441 lines
12 KiB
Go
package main
|
|
|
|
import (
|
|
"flag"
|
|
"fmt"
|
|
"image"
|
|
"image/color"
|
|
"image/draw"
|
|
_ "image/jpeg"
|
|
"image/png"
|
|
_ "image/png"
|
|
"log"
|
|
"math"
|
|
"os"
|
|
"sort"
|
|
"time"
|
|
|
|
"github.com/nfnt/resize"
|
|
"gopkg.in/cheggaaa/pb.v1"
|
|
)
|
|
|
|
// MaxImageSize is the resized image maximum width or height depending on the image ratio.
|
|
const MaxImageSize = 320
|
|
|
|
const Banner = `
|
|
__ _
|
|
/ _| ___ _ __ ___ _ __ ___(_) ___
|
|
| |_ / _ \| '__/ _ \ '_ \/ __| |/ __|
|
|
| _| (_) | | | __/ | | \__ \ | (__
|
|
|_| \___/|_| \___|_| |_|___/_|\___|
|
|
|
|
Image forgery detection library.
|
|
Version: %s
|
|
|
|
`
|
|
|
|
// Version indicates the current build version.
|
|
var Version string
|
|
|
|
var (
|
|
// Flags
|
|
source = flag.String("in", "", "Source")
|
|
destination = flag.String("out", "", "Destination")
|
|
blurRadius = flag.Int("blur", 1, "Blur radius")
|
|
blockSize = flag.Int("bs", 4, "Block size")
|
|
offsetThreshold = flag.Int("ot", 72, "Offset threshold")
|
|
distanceThreshold = flag.Float64("dt", 0.4, "Distance threshold")
|
|
forgeryThreshold = flag.Float64("ft", 210, "Forgery threshold")
|
|
)
|
|
|
|
// pixel struct contains the discrete cosine transformation R,G,B,Y values.
|
|
type pixel struct {
|
|
r, g, b, y float64
|
|
}
|
|
|
|
// dctPx stores the DCT pixel values.
|
|
type dctPx [][]pixel
|
|
|
|
// imageBlock contains the generated block upper left position and the stored image.
|
|
type imageBlock struct {
|
|
x int
|
|
y int
|
|
img image.Image
|
|
}
|
|
|
|
// vector struct contains the neighboring blocks top left position and the shift vectors between them.
|
|
type vector struct {
|
|
xa, ya int
|
|
xb, yb int
|
|
offsetX, offsetY float64
|
|
}
|
|
|
|
// feature struct contains the feature blocks x, y position and their respective values.
|
|
type feature struct {
|
|
x int
|
|
y int
|
|
coef float64
|
|
}
|
|
|
|
// q4x4 is the quantization matrix table.
|
|
var q4x4 = [][]float64{
|
|
{16.0, 10.0, 24.0, 51.0},
|
|
{14.0, 16.0, 40.0, 69.0},
|
|
{18.0, 37.0, 68.0, 103.0},
|
|
{49.0, 78.0, 103.0, 120.0},
|
|
}
|
|
|
|
var (
|
|
resizedImg image.Image
|
|
features []feature
|
|
vectors []vector
|
|
cr, cg, cb, cy float64
|
|
)
|
|
|
|
func main() {
|
|
done := make(chan struct{})
|
|
flag.Usage = func() {
|
|
fmt.Fprintf(os.Stderr, fmt.Sprintf(Banner, Version))
|
|
flag.PrintDefaults()
|
|
}
|
|
flag.Parse()
|
|
|
|
if len(*source) == 0 || len(*destination) == 0 {
|
|
log.Fatal("Usage: forensic -in input.jpg -out out.jpg")
|
|
}
|
|
|
|
start := time.Now()
|
|
|
|
input, err := os.Open(*source)
|
|
defer input.Close()
|
|
|
|
if err != nil {
|
|
fmt.Printf("Error reading the image file: %v", err)
|
|
}
|
|
src, _, err := image.Decode(input)
|
|
if err != nil {
|
|
fmt.Printf("Error decoding the image: %v", err)
|
|
}
|
|
|
|
if src.Bounds().Dx() > MaxImageSize {
|
|
resizedImg = resize.Resize(MaxImageSize, 0, src, resize.Lanczos3)
|
|
} else if src.Bounds().Dy() > MaxImageSize {
|
|
resizedImg = resize.Resize(0, MaxImageSize, src, resize.Lanczos3)
|
|
} else {
|
|
resizedImg = src
|
|
}
|
|
|
|
go func() {
|
|
result := process(resizedImg, done)
|
|
if result {
|
|
fmt.Println("\nThe image is forged!")
|
|
} else {
|
|
fmt.Println("\nThe image is not forged!")
|
|
}
|
|
}()
|
|
<-done
|
|
|
|
fmt.Printf("\nDone in: %.2fs\n", time.Since(start).Seconds())
|
|
}
|
|
|
|
func process(input image.Image, done chan struct{}) bool {
|
|
img := imgToNRGBA(input)
|
|
output := image.NewRGBA(img.Bounds())
|
|
draw.Draw(output, image.Rect(0, 0, img.Bounds().Dx(), img.Bounds().Dy()), img, image.ZP, draw.Src)
|
|
|
|
// Blur the image to eliminate the details.
|
|
if *blurRadius > 0 {
|
|
img = StackBlur(img, uint32(*blurRadius))
|
|
}
|
|
|
|
// Convert image to YUV color space
|
|
yuv := convertRGBImageToYUV(img)
|
|
newImg := image.NewRGBA(yuv.Bounds())
|
|
draw.Draw(newImg, image.Rect(0, 0, yuv.Bounds().Dx(), yuv.Bounds().Dy()), yuv, image.ZP, draw.Src)
|
|
|
|
dx, dy := yuv.Bounds().Max.X, yuv.Bounds().Max.Y
|
|
bdx, bdy := (dx - *blockSize + 1), (dy - *blockSize + 1)
|
|
n := math.Max(float64(dx), float64(dy))
|
|
|
|
var blocks []imageBlock
|
|
for i := 0; i < bdx; i++ {
|
|
for j := 0; j < bdy; j++ {
|
|
r := image.Rect(i, j, i+*blockSize, j+*blockSize)
|
|
block := newImg.SubImage(r).(*image.RGBA)
|
|
blocks = append(blocks, imageBlock{x: i, y: j, img: block})
|
|
}
|
|
}
|
|
|
|
bar := pb.StartNew(len(blocks))
|
|
bar.Prefix("Generate blocks: ")
|
|
|
|
for _, block := range blocks {
|
|
// Average RGB value.
|
|
var avr, avg, avb float64
|
|
|
|
b := block.img.(*image.RGBA)
|
|
i0 := b.PixOffset(b.Bounds().Min.X, b.Bounds().Min.Y)
|
|
i1 := i0 + b.Bounds().Dx()*4
|
|
|
|
dctPixels := make(dctPx, *blockSize**blockSize)
|
|
for u := 0; u < *blockSize; u++ {
|
|
dctPixels[u] = make([]pixel, *blockSize)
|
|
for v := 0; v < *blockSize; v++ {
|
|
for i := i0; i < i1; i += 4 {
|
|
// Get the YUV converted image pixels
|
|
yc, uc, vc, _ := b.Pix[i+0], b.Pix[i+2], b.Pix[i+2], b.Pix[i+3]
|
|
// Convert YUV to RGB and obtain the R,G,B value
|
|
r, g, b := color.YCbCrToRGB(yc, uc, vc)
|
|
|
|
for x := 0; x < *blockSize; x++ {
|
|
for y := 0; y < *blockSize; y++ {
|
|
// Compute Discrete Cosine coefficients
|
|
cr += dct(float64(x), float64(y), float64(u), float64(v), float64(*blockSize)) * float64(r)
|
|
cg += dct(float64(x), float64(y), float64(u), float64(v), float64(*blockSize)) * float64(g)
|
|
cb += dct(float64(x), float64(y), float64(u), float64(v), float64(*blockSize)) * float64(b)
|
|
cy += dct(float64(x), float64(y), float64(u), float64(v), float64(*blockSize)) * float64(yc)
|
|
|
|
avr += float64(r)
|
|
avg += float64(g)
|
|
avb += float64(b)
|
|
}
|
|
}
|
|
}
|
|
|
|
// normalization
|
|
alpha := func(a float64) float64 {
|
|
if a == 0 {
|
|
return math.Sqrt(1.0 / float64(n))
|
|
} else {
|
|
return math.Sqrt(2.0 / float64(n))
|
|
}
|
|
}
|
|
|
|
cu, cv := float64(u), float64(v)
|
|
cr *= alpha(cu) * alpha(cv)
|
|
cg *= alpha(cu) * alpha(cv)
|
|
cb *= alpha(cu) * alpha(cv)
|
|
cy *= alpha(cu) * alpha(cv)
|
|
|
|
dctPixels[u][v] = pixel{cr, cg, cb, cy}
|
|
|
|
// Get the quantized DCT coefficients.
|
|
if *blockSize <= 4 {
|
|
dctPixels[u][v].r = dctPixels[u][v].r / q4x4[u][v]
|
|
dctPixels[u][v].g = dctPixels[u][v].g / q4x4[u][v]
|
|
dctPixels[u][v].b = dctPixels[u][v].b / q4x4[u][v]
|
|
dctPixels[u][v].y = dctPixels[u][v].y / q4x4[u][v]
|
|
}
|
|
}
|
|
}
|
|
avr /= float64(*blockSize * *blockSize)
|
|
avg /= float64(*blockSize * *blockSize)
|
|
avb /= float64(*blockSize * *blockSize)
|
|
|
|
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].y})
|
|
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][1].y})
|
|
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[1][0].y})
|
|
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].r})
|
|
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].g})
|
|
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].b})
|
|
|
|
// Append average R,G,B values to the features vector(slice).
|
|
features = append(features, feature{x: block.x, y: block.y, coef: avr})
|
|
features = append(features, feature{x: block.x, y: block.y, coef: avb})
|
|
features = append(features, feature{x: block.x, y: block.y, coef: avg})
|
|
bar.Increment()
|
|
}
|
|
bar.Finish()
|
|
|
|
// Lexicographically sort the feature vectors
|
|
sort.Sort(featVec(features))
|
|
|
|
bar = pb.StartNew(len(features) - 1)
|
|
bar.Prefix("Analyze: ")
|
|
|
|
for i := 0; i < len(features)-1; i++ {
|
|
blockA, blockB := features[i], features[i+1]
|
|
result := analyzeBlocks(blockA, blockB)
|
|
|
|
if result != nil {
|
|
vectors = append(vectors, *result)
|
|
}
|
|
bar.Increment()
|
|
}
|
|
bar.Finish()
|
|
|
|
simBlocks := getSuspiciousBlocks(vectors)
|
|
forgedBlocks, result := filterOutNeighbors(simBlocks)
|
|
|
|
forgedImg := image.NewRGBA(img.Bounds())
|
|
overlay := color.RGBA{255, 0, 0, 255}
|
|
|
|
fmt.Println("Number of forged blocks detected: ", len(forgedBlocks))
|
|
for _, bl := range forgedBlocks {
|
|
draw.Draw(forgedImg, image.Rect(bl.xa, bl.ya, bl.xa+*blockSize*2, bl.ya+*blockSize*2), &image.Uniform{overlay}, image.ZP, draw.Over)
|
|
}
|
|
|
|
final := StackBlur(imgToNRGBA(forgedImg), 10)
|
|
draw.Draw(output, img.Bounds(), final, image.ZP, draw.Over)
|
|
|
|
out, err := os.Create(*destination)
|
|
if err != nil {
|
|
fmt.Printf("Error creating output file: %v", err)
|
|
}
|
|
|
|
if err := png.Encode(out, output); err != nil {
|
|
fmt.Printf("Error encoding image file: %v", err)
|
|
}
|
|
|
|
done <- struct{}{}
|
|
return result
|
|
}
|
|
|
|
//convertRGBImageToYUV coverts the image from RGB to YUV color space.
|
|
func convertRGBImageToYUV(img image.Image) image.Image {
|
|
bounds := img.Bounds()
|
|
dx, dy := bounds.Max.X, bounds.Max.Y
|
|
|
|
yuvImage := image.NewRGBA(bounds)
|
|
for x := 0; x < dx; x++ {
|
|
for y := 0; y < dy; y++ {
|
|
r, g, b, _ := img.At(x, y).RGBA()
|
|
yc, uc, vc := color.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
|
|
yuvImage.Set(x, y, color.RGBA{uint8(yc), uint8(uc), uint8(vc), 255})
|
|
}
|
|
}
|
|
return yuvImage
|
|
}
|
|
|
|
// analyzeBlocks checks weather two neighboring blocks are considered almost identical.
|
|
func analyzeBlocks(blockA, blockB feature) *vector {
|
|
// Compute the euclidean distance between two neighboring blocks.
|
|
dx := float64(blockA.x) - float64(blockB.x)
|
|
dy := float64(blockA.y) - float64(blockB.y)
|
|
dist := math.Sqrt(math.Pow(dx, 2) + math.Pow(dy, 2))
|
|
|
|
res := &vector{
|
|
xa: blockA.x,
|
|
ya: blockA.y,
|
|
xb: blockB.x,
|
|
yb: blockB.y,
|
|
offsetX: math.Abs(dx),
|
|
offsetY: math.Abs(dy),
|
|
}
|
|
|
|
if dist < *distanceThreshold {
|
|
return res
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type offset struct {
|
|
x, y float64
|
|
}
|
|
|
|
type newVector []vector
|
|
|
|
// getSuspiciousBlocks analyze pair of candidate and check for
|
|
// similarity by computing the accumulative number of shift vectors.
|
|
func getSuspiciousBlocks(vect []vector) newVector {
|
|
var suspiciousBlocks newVector
|
|
//For each pair of candidate compute the accumulative number of the corresponding shift vectors.
|
|
duplicates := make(map[offset]int)
|
|
|
|
bar := pb.StartNew(len(vect)).Prefix("Detect: ")
|
|
|
|
for _, v := range vect {
|
|
// Check for duplicate blocks
|
|
offsetX := v.offsetX
|
|
offsetY := v.offsetY
|
|
offset := &offset{offsetX, offsetY}
|
|
|
|
_, exists := duplicates[*offset]
|
|
if exists {
|
|
duplicates[*offset]++
|
|
} else {
|
|
duplicates[*offset] = 1
|
|
}
|
|
|
|
// If the accumulative number of corresponding shift vectors is greater than
|
|
// a predefined threshold, the corresponding regions are marked as suspicious.
|
|
if duplicates[*offset] > *offsetThreshold {
|
|
suspiciousBlocks = append(suspiciousBlocks, vector{
|
|
v.xa, v.ya, v.xb, v.yb, v.offsetX, v.offsetY,
|
|
})
|
|
}
|
|
bar.Increment()
|
|
}
|
|
bar.Finish()
|
|
return suspiciousBlocks
|
|
}
|
|
|
|
// filterOutNeighbors filters out the neighboring blocks.
|
|
func filterOutNeighbors(vect []vector) (newVector, bool) {
|
|
var forgedBlocks newVector
|
|
var isForged bool
|
|
|
|
bar := pb.StartNew(len(vect)).Prefix("Filter: ")
|
|
|
|
for i := 1; i < len(vect); i++ {
|
|
blockA, blockB := vect[i-1], vect[i]
|
|
|
|
// Calculate the euclidean distance between both regions.
|
|
dx := float64(blockA.xa - blockB.xa)
|
|
dy := float64(blockA.ya - blockB.ya)
|
|
dist := math.Sqrt(math.Pow(dx, 2) + math.Pow(dy, 2))
|
|
|
|
// Evaluate the euclidean distance distance between two regions
|
|
// and make sure the distance is greater than a predefined threshold.
|
|
if dist > *forgeryThreshold {
|
|
forgedBlocks = append(forgedBlocks, vector{
|
|
blockA.xa, blockA.ya, blockA.xb, blockA.yb, blockA.offsetX, vect[i].offsetY,
|
|
})
|
|
// We need to verify if an image is forged only once.
|
|
if !isForged {
|
|
isForged = true
|
|
}
|
|
}
|
|
bar.Increment()
|
|
}
|
|
bar.Finish()
|
|
return forgedBlocks, isForged
|
|
}
|
|
|
|
// dct computes the Discrete Cosine Transform.
|
|
// https://en.wikipedia.org/wiki/Discrete_cosine_transform
|
|
func dct(x, y, u, v, w float64) float64 {
|
|
a := math.Cos(((2.0*x + 1) * (u * math.Pi)) / (2 * w))
|
|
b := math.Cos(((2.0*y + 1) * (v * math.Pi)) / (2 * w))
|
|
|
|
return a * b
|
|
}
|
|
|
|
// idct computes the Inverse Discrete Cosine Transform. (Only for testing purposes.)
|
|
func idct(u, v, x, y, w float64) float64 {
|
|
// normalization
|
|
alpha := func(a float64) float64 {
|
|
if a == 0 {
|
|
return 1.0 / math.Sqrt(2.0)
|
|
}
|
|
return 1.0
|
|
}
|
|
|
|
return dct(u, v, x, y, w) * alpha(u) * alpha(v)
|
|
}
|
|
|
|
// Implement sorting function on feature vector
|
|
type featVec []feature
|
|
|
|
func (a featVec) Len() int { return len(a) }
|
|
func (a featVec) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
|
func (a featVec) Less(i, j int) bool {
|
|
if a[i].coef < a[j].coef {
|
|
return true
|
|
}
|
|
if a[i].coef > a[j].coef {
|
|
return false
|
|
}
|
|
return a[i].coef < a[j].coef
|
|
}
|