Files
forensic/main.go

351 lines
9.1 KiB
Go

package main
import (
"fmt"
"image"
"image/color"
"image/draw"
_ "image/jpeg"
"image/png"
_ "image/png"
"math"
"os"
"sort"
"time"
)
const (
BlockSize int = 4
MagnitudeThreshold = 0.5
SymmetryThreshold = 40
)
// pixel struct contains the discrete cosine transformation R,G,B,Y values.
type pixel struct {
r, g, b, y float64
}
// dctPx stores the DCT pixel values.
type dctPx [][]pixel
// imageBlock contains the generated block upper left position and the stored image.
type imageBlock struct {
x int
y int
img image.Image
}
// vector struct contains the neighboring blocks top left position and the shift vectors between them.
type vector struct {
xa, ya int
xb, yb int
offsetX, offsetY int
}
// feature struct contains the feature blocks x, y position and their respective values.
type feature struct {
x int
y int
val float64
}
var (
features []feature
vectors []vector
cr, cg, cb, cy float64
)
func main() {
input, err := os.Open("test2.jpg")
defer input.Close()
if err != nil {
fmt.Printf("Error reading the image file: %v", err)
}
img, _, err := image.Decode(input)
if err != nil {
fmt.Printf("Error decoding the image: %v", err)
}
start := time.Now()
// Convert image to YUV color space
yuv := convertRGBImageToYUV(img)
newImg := image.NewRGBA(yuv.Bounds())
draw.Draw(newImg, image.Rect(0, 0, yuv.Bounds().Dx(), yuv.Bounds().Dy()), yuv, image.ZP, draw.Src)
dx, dy := yuv.Bounds().Max.X, yuv.Bounds().Max.Y
bdx, bdy := (dx - BlockSize + 1), (dy - BlockSize + 1)
var blocks []imageBlock
for i := 0; i < bdx; i++ {
for j := 0; j < bdy; j++ {
r := image.Rect(i, j, i+BlockSize, j+BlockSize)
block := newImg.SubImage(r).(*image.RGBA)
blocks = append(blocks, imageBlock{x: i, y: j, img: block})
draw.Draw(newImg, image.Rect(0, 0, yuv.Bounds().Max.X, yuv.Bounds().Max.Y), block, image.ZP, draw.Src)
}
}
fmt.Printf("Len: %d", len(blocks))
out, err := os.Create("output.png")
if err != nil {
fmt.Printf("Error creating output file: %v", err)
}
if err := png.Encode(out, newImg); err != nil {
fmt.Printf("Error encoding image file: %v", err)
}
// Average RGB value.
var avr, avg, avb float64
for _, block := range blocks {
b := block.img.(*image.RGBA)
i0 := b.PixOffset(b.Bounds().Min.X, b.Bounds().Min.Y)
i1 := i0 + b.Bounds().Dx()*4
dctPixels := make(dctPx, BlockSize*BlockSize)
for u := 0; u < BlockSize; u++ {
dctPixels[u] = make([]pixel, BlockSize)
for v := 0; v < BlockSize; v++ {
for i := i0; i < i1; i += 4 {
// Get the YUV converted image pixels
yc, uc, vc, _ := b.Pix[i+0], b.Pix[i+2], b.Pix[i+2], b.Pix[i+3]
// Convert YUV to RGB and obtain the R value
r, g, b := color.YCbCrToRGB(yc, uc, vc)
for x := 0; x < BlockSize; x++ {
for y := 0; y < BlockSize; y++ {
// Compute Discrete Cosine coefficients
cr += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(r)
cg += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(g)
cb += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(b)
cy += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(yc)
avr += float64(r)
avg += float64(g)
avb += float64(b)
}
}
}
// normalization
alpha := func(a float64) float64 {
if a == 0 {
return math.Sqrt(1.0 / float64(dx))
} else {
return math.Sqrt(2.0 / float64(dy))
}
}
fi, fj := float64(u), float64(v)
cr *= alpha(fi) * alpha(fj)
cg *= alpha(fi) * alpha(fj)
cb *= alpha(fi) * alpha(fj)
cy *= alpha(fi) * alpha(fj)
dctPixels[u][v] = pixel{cr, cg, cb, cy}
}
}
avr /= float64(BlockSize * BlockSize)
avg /= float64(BlockSize * BlockSize)
avb /= float64(BlockSize * BlockSize)
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].y})
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][1].y})
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[1][0].y})
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].r})
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].g})
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].b})
// Append average R,G,B values to the features vector(slice).
features = append(features, feature{x: block.x, y: block.y, val: avr})
features = append(features, feature{x: block.x, y: block.y, val: avb})
features = append(features, feature{x: block.x, y: block.y, val: avg})
}
// Lexicographically sort the feature vectors
sort.Sort(featVec(features))
for i := 0; i < len(features)-1; i++ {
blockA, blockB := features[i], features[i+1]
result := analyze(blockA, blockB)
if result != nil {
vectors = append(vectors, *result)
}
}
res := checkForSimilarity(vectors)
fmt.Println(res)
fmt.Printf("Features length: %d", len(features))
fmt.Printf("\nDone in: %.2fs\n", time.Since(start).Seconds())
}
//convertRGBImageToYUV coverts the image from RGB to YUV color space.
func convertRGBImageToYUV(img image.Image) image.Image {
bounds := img.Bounds()
dx, dy := bounds.Max.X, bounds.Max.Y
yuvImage := image.NewRGBA(bounds)
for x := 0; x < dx; x++ {
for y := 0; y < dy; y++ {
r, g, b, _ := img.At(x, y).RGBA()
yc, uc, vc := color.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
yuvImage.Set(x, y, color.RGBA{uint8(yc), uint8(uc), uint8(vc), 255})
}
}
return yuvImage
}
// analyze checks weather two neighboring blocks are considered almost identical.
func analyze(blockA, blockB feature) *vector {
// Compute the euclidean distance between two neighboring blocks.
dx := float64(blockA.x) - float64(blockB.x)
dy := float64(blockA.y) - float64(blockB.y)
dist := math.Sqrt(math.Pow(dx, 2) + math.Pow(dy, 2))
res := &vector{
xa: blockA.x,
ya: blockA.y,
xb: blockB.x,
yb: blockB.y,
offsetX: int(math.Abs(dx)),
offsetY: int(math.Abs(dy)),
}
if dist < MagnitudeThreshold {
return res
}
return nil
}
type offset struct {
x, y int
}
type newVector []vector
// checkForSimilarity analyze pair of candidate and check for
// similarity by computing the accumulative number of shift vectors.
func checkForSimilarity(vect []vector) newVector {
var identicalBlocks newVector
//For each pair of candidate compute the accumulative number of the corresponding shift vectors.
duplicates := make(map[offset]int)
for _, v := range vect {
// Check for duplicate blocks
offsetX := v.offsetX
offsetY := v.offsetY
offset := &offset{offsetX, offsetY}
_, exists := duplicates[*offset]
if exists {
duplicates[*offset]++
} else {
duplicates[*offset] = 1
}
// If the accumulative number of corresponding shift vectors is greater than
// a predefined threshold, the corresponding regions are marked as suspicious.
if duplicates[*offset] > SymmetryThreshold {
identicalBlocks = append(identicalBlocks, vector{
v.xa, v.xb, v.ya, v.yb, v.offsetX, v.offsetY,
})
}
}
return identicalBlocks
}
// TODO filter out neighboring blocks.
func filterOutNeighbors() {
}
// dct computes the Discrete Cosine Transform.
// https://en.wikipedia.org/wiki/Discrete_cosine_transform
func dct(x, y, u, v, w float64) float64 {
a := math.Cos(((2.0*x + 1) * (u * math.Pi)) / (2 * w))
b := math.Cos(((2.0*y + 1) * (v * math.Pi)) / (2 * w))
return a * b
}
// idct computes the Inverse Discrete Cosine Transform. (Only for testing purposes.)
func idct(u, v, x, y, w float64) float64 {
// normalization
alpha := func(a float64) float64 {
if a == 0 {
return 1.0 / math.Sqrt(2.0)
}
return 1.0
}
return dct(u, v, x, y, w) * alpha(u) * alpha(v)
}
func RGBtoYUV(r, g, b uint32) (uint32, uint32, uint32) {
y := 0.299*float64(r) + 0.587*float64(g) + 0.114*float64(b)
u := (((float64(b) - float64(y)) * 0.493) + 111) / 222 * 255
v := (((float64(r) - float64(y)) * 0.877) + 155) / 312 * 255
return uint32(y), uint32(u), uint32(v)
}
func YUVtoRGB(y, u, v uint32) (uint32, uint32, uint32) {
r := float64(y) + (1.13983 * float64(v))
g := float64(y) - (0.39465 * float64(u)) - (0.58060 * float64(v))
b := float64(y) + (2.03211 * float64(u))
return uint32(r), uint32(g), uint32(b)
}
func clamp255(x float64) uint8 {
if x < 0 {
return 0
}
if x > 255 {
return 255
}
return uint8(x)
}
// max returns the biggest value between two numbers.
func max(x, y int) float64 {
if x > y {
return float64(x)
}
return float64(y)
}
// unique returns slice's unique values.
func unique(intSlice []int) []int {
keys := make(map[int]bool)
list := []int{}
for _, entry := range intSlice {
if _, value := keys[entry]; !value {
keys[entry] = true
list = append(list, entry)
}
}
return list
}
// Implement sorting function on feature vector
type featVec []feature
func (a featVec) Len() int { return len(a) }
func (a featVec) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a featVec) Less(i, j int) bool {
if a[i].val < a[j].val {
return true
}
if a[i].val > a[j].val {
return false
}
return a[i].val < a[j].val
}