mirror of
https://github.com/esimov/forensic.git
synced 2025-10-05 08:26:49 +08:00
351 lines
9.1 KiB
Go
351 lines
9.1 KiB
Go
package main
|
|
|
|
import (
|
|
"fmt"
|
|
"image"
|
|
"image/color"
|
|
"image/draw"
|
|
_ "image/jpeg"
|
|
"image/png"
|
|
_ "image/png"
|
|
"math"
|
|
"os"
|
|
"sort"
|
|
"time"
|
|
)
|
|
|
|
const (
|
|
BlockSize int = 4
|
|
MagnitudeThreshold = 0.5
|
|
SymmetryThreshold = 40
|
|
)
|
|
|
|
// pixel struct contains the discrete cosine transformation R,G,B,Y values.
|
|
type pixel struct {
|
|
r, g, b, y float64
|
|
}
|
|
|
|
// dctPx stores the DCT pixel values.
|
|
type dctPx [][]pixel
|
|
|
|
// imageBlock contains the generated block upper left position and the stored image.
|
|
type imageBlock struct {
|
|
x int
|
|
y int
|
|
img image.Image
|
|
}
|
|
|
|
// vector struct contains the neighboring blocks top left position and the shift vectors between them.
|
|
type vector struct {
|
|
xa, ya int
|
|
xb, yb int
|
|
offsetX, offsetY int
|
|
}
|
|
|
|
// feature struct contains the feature blocks x, y position and their respective values.
|
|
type feature struct {
|
|
x int
|
|
y int
|
|
val float64
|
|
}
|
|
|
|
var (
|
|
features []feature
|
|
vectors []vector
|
|
cr, cg, cb, cy float64
|
|
)
|
|
|
|
func main() {
|
|
input, err := os.Open("test2.jpg")
|
|
defer input.Close()
|
|
|
|
if err != nil {
|
|
fmt.Printf("Error reading the image file: %v", err)
|
|
}
|
|
img, _, err := image.Decode(input)
|
|
if err != nil {
|
|
fmt.Printf("Error decoding the image: %v", err)
|
|
}
|
|
|
|
start := time.Now()
|
|
|
|
// Convert image to YUV color space
|
|
yuv := convertRGBImageToYUV(img)
|
|
newImg := image.NewRGBA(yuv.Bounds())
|
|
draw.Draw(newImg, image.Rect(0, 0, yuv.Bounds().Dx(), yuv.Bounds().Dy()), yuv, image.ZP, draw.Src)
|
|
|
|
dx, dy := yuv.Bounds().Max.X, yuv.Bounds().Max.Y
|
|
bdx, bdy := (dx - BlockSize + 1), (dy - BlockSize + 1)
|
|
|
|
var blocks []imageBlock
|
|
for i := 0; i < bdx; i++ {
|
|
for j := 0; j < bdy; j++ {
|
|
r := image.Rect(i, j, i+BlockSize, j+BlockSize)
|
|
block := newImg.SubImage(r).(*image.RGBA)
|
|
blocks = append(blocks, imageBlock{x: i, y: j, img: block})
|
|
draw.Draw(newImg, image.Rect(0, 0, yuv.Bounds().Max.X, yuv.Bounds().Max.Y), block, image.ZP, draw.Src)
|
|
}
|
|
}
|
|
|
|
fmt.Printf("Len: %d", len(blocks))
|
|
|
|
out, err := os.Create("output.png")
|
|
if err != nil {
|
|
fmt.Printf("Error creating output file: %v", err)
|
|
}
|
|
|
|
if err := png.Encode(out, newImg); err != nil {
|
|
fmt.Printf("Error encoding image file: %v", err)
|
|
}
|
|
|
|
// Average RGB value.
|
|
var avr, avg, avb float64
|
|
|
|
for _, block := range blocks {
|
|
b := block.img.(*image.RGBA)
|
|
i0 := b.PixOffset(b.Bounds().Min.X, b.Bounds().Min.Y)
|
|
i1 := i0 + b.Bounds().Dx()*4
|
|
|
|
dctPixels := make(dctPx, BlockSize*BlockSize)
|
|
for u := 0; u < BlockSize; u++ {
|
|
dctPixels[u] = make([]pixel, BlockSize)
|
|
for v := 0; v < BlockSize; v++ {
|
|
for i := i0; i < i1; i += 4 {
|
|
// Get the YUV converted image pixels
|
|
yc, uc, vc, _ := b.Pix[i+0], b.Pix[i+2], b.Pix[i+2], b.Pix[i+3]
|
|
// Convert YUV to RGB and obtain the R value
|
|
r, g, b := color.YCbCrToRGB(yc, uc, vc)
|
|
|
|
for x := 0; x < BlockSize; x++ {
|
|
for y := 0; y < BlockSize; y++ {
|
|
// Compute Discrete Cosine coefficients
|
|
cr += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(r)
|
|
cg += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(g)
|
|
cb += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(b)
|
|
cy += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(yc)
|
|
|
|
avr += float64(r)
|
|
avg += float64(g)
|
|
avb += float64(b)
|
|
}
|
|
}
|
|
}
|
|
|
|
// normalization
|
|
alpha := func(a float64) float64 {
|
|
if a == 0 {
|
|
return math.Sqrt(1.0 / float64(dx))
|
|
} else {
|
|
return math.Sqrt(2.0 / float64(dy))
|
|
}
|
|
}
|
|
|
|
fi, fj := float64(u), float64(v)
|
|
cr *= alpha(fi) * alpha(fj)
|
|
cg *= alpha(fi) * alpha(fj)
|
|
cb *= alpha(fi) * alpha(fj)
|
|
cy *= alpha(fi) * alpha(fj)
|
|
|
|
dctPixels[u][v] = pixel{cr, cg, cb, cy}
|
|
}
|
|
}
|
|
avr /= float64(BlockSize * BlockSize)
|
|
avg /= float64(BlockSize * BlockSize)
|
|
avb /= float64(BlockSize * BlockSize)
|
|
|
|
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].y})
|
|
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][1].y})
|
|
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[1][0].y})
|
|
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].r})
|
|
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].g})
|
|
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].b})
|
|
|
|
// Append average R,G,B values to the features vector(slice).
|
|
features = append(features, feature{x: block.x, y: block.y, val: avr})
|
|
features = append(features, feature{x: block.x, y: block.y, val: avb})
|
|
features = append(features, feature{x: block.x, y: block.y, val: avg})
|
|
}
|
|
|
|
// Lexicographically sort the feature vectors
|
|
sort.Sort(featVec(features))
|
|
|
|
for i := 0; i < len(features)-1; i++ {
|
|
blockA, blockB := features[i], features[i+1]
|
|
result := analyze(blockA, blockB)
|
|
|
|
if result != nil {
|
|
vectors = append(vectors, *result)
|
|
}
|
|
}
|
|
res := checkForSimilarity(vectors)
|
|
fmt.Println(res)
|
|
|
|
fmt.Printf("Features length: %d", len(features))
|
|
|
|
fmt.Printf("\nDone in: %.2fs\n", time.Since(start).Seconds())
|
|
}
|
|
|
|
//convertRGBImageToYUV coverts the image from RGB to YUV color space.
|
|
func convertRGBImageToYUV(img image.Image) image.Image {
|
|
bounds := img.Bounds()
|
|
dx, dy := bounds.Max.X, bounds.Max.Y
|
|
|
|
yuvImage := image.NewRGBA(bounds)
|
|
for x := 0; x < dx; x++ {
|
|
for y := 0; y < dy; y++ {
|
|
r, g, b, _ := img.At(x, y).RGBA()
|
|
yc, uc, vc := color.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
|
|
yuvImage.Set(x, y, color.RGBA{uint8(yc), uint8(uc), uint8(vc), 255})
|
|
}
|
|
}
|
|
return yuvImage
|
|
}
|
|
|
|
// analyze checks weather two neighboring blocks are considered almost identical.
|
|
func analyze(blockA, blockB feature) *vector {
|
|
// Compute the euclidean distance between two neighboring blocks.
|
|
dx := float64(blockA.x) - float64(blockB.x)
|
|
dy := float64(blockA.y) - float64(blockB.y)
|
|
dist := math.Sqrt(math.Pow(dx, 2) + math.Pow(dy, 2))
|
|
|
|
res := &vector{
|
|
xa: blockA.x,
|
|
ya: blockA.y,
|
|
xb: blockB.x,
|
|
yb: blockB.y,
|
|
offsetX: int(math.Abs(dx)),
|
|
offsetY: int(math.Abs(dy)),
|
|
}
|
|
|
|
if dist < MagnitudeThreshold {
|
|
return res
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type offset struct {
|
|
x, y int
|
|
}
|
|
|
|
type newVector []vector
|
|
|
|
// checkForSimilarity analyze pair of candidate and check for
|
|
// similarity by computing the accumulative number of shift vectors.
|
|
func checkForSimilarity(vect []vector) newVector {
|
|
var identicalBlocks newVector
|
|
//For each pair of candidate compute the accumulative number of the corresponding shift vectors.
|
|
duplicates := make(map[offset]int)
|
|
|
|
for _, v := range vect {
|
|
// Check for duplicate blocks
|
|
offsetX := v.offsetX
|
|
offsetY := v.offsetY
|
|
offset := &offset{offsetX, offsetY}
|
|
|
|
_, exists := duplicates[*offset]
|
|
if exists {
|
|
duplicates[*offset]++
|
|
} else {
|
|
duplicates[*offset] = 1
|
|
}
|
|
|
|
// If the accumulative number of corresponding shift vectors is greater than
|
|
// a predefined threshold, the corresponding regions are marked as suspicious.
|
|
if duplicates[*offset] > SymmetryThreshold {
|
|
identicalBlocks = append(identicalBlocks, vector{
|
|
v.xa, v.xb, v.ya, v.yb, v.offsetX, v.offsetY,
|
|
})
|
|
}
|
|
}
|
|
return identicalBlocks
|
|
}
|
|
|
|
// TODO filter out neighboring blocks.
|
|
func filterOutNeighbors() {
|
|
|
|
}
|
|
|
|
// dct computes the Discrete Cosine Transform.
|
|
// https://en.wikipedia.org/wiki/Discrete_cosine_transform
|
|
func dct(x, y, u, v, w float64) float64 {
|
|
a := math.Cos(((2.0*x + 1) * (u * math.Pi)) / (2 * w))
|
|
b := math.Cos(((2.0*y + 1) * (v * math.Pi)) / (2 * w))
|
|
|
|
return a * b
|
|
}
|
|
|
|
// idct computes the Inverse Discrete Cosine Transform. (Only for testing purposes.)
|
|
func idct(u, v, x, y, w float64) float64 {
|
|
// normalization
|
|
alpha := func(a float64) float64 {
|
|
if a == 0 {
|
|
return 1.0 / math.Sqrt(2.0)
|
|
}
|
|
return 1.0
|
|
}
|
|
|
|
return dct(u, v, x, y, w) * alpha(u) * alpha(v)
|
|
}
|
|
|
|
func RGBtoYUV(r, g, b uint32) (uint32, uint32, uint32) {
|
|
y := 0.299*float64(r) + 0.587*float64(g) + 0.114*float64(b)
|
|
u := (((float64(b) - float64(y)) * 0.493) + 111) / 222 * 255
|
|
v := (((float64(r) - float64(y)) * 0.877) + 155) / 312 * 255
|
|
|
|
return uint32(y), uint32(u), uint32(v)
|
|
}
|
|
|
|
func YUVtoRGB(y, u, v uint32) (uint32, uint32, uint32) {
|
|
r := float64(y) + (1.13983 * float64(v))
|
|
g := float64(y) - (0.39465 * float64(u)) - (0.58060 * float64(v))
|
|
b := float64(y) + (2.03211 * float64(u))
|
|
|
|
return uint32(r), uint32(g), uint32(b)
|
|
}
|
|
|
|
func clamp255(x float64) uint8 {
|
|
if x < 0 {
|
|
return 0
|
|
}
|
|
if x > 255 {
|
|
return 255
|
|
}
|
|
return uint8(x)
|
|
}
|
|
|
|
// max returns the biggest value between two numbers.
|
|
func max(x, y int) float64 {
|
|
if x > y {
|
|
return float64(x)
|
|
}
|
|
return float64(y)
|
|
}
|
|
|
|
// unique returns slice's unique values.
|
|
func unique(intSlice []int) []int {
|
|
keys := make(map[int]bool)
|
|
list := []int{}
|
|
for _, entry := range intSlice {
|
|
if _, value := keys[entry]; !value {
|
|
keys[entry] = true
|
|
list = append(list, entry)
|
|
}
|
|
}
|
|
return list
|
|
}
|
|
|
|
// Implement sorting function on feature vector
|
|
type featVec []feature
|
|
|
|
func (a featVec) Len() int { return len(a) }
|
|
func (a featVec) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
|
func (a featVec) Less(i, j int) bool {
|
|
if a[i].val < a[j].val {
|
|
return true
|
|
}
|
|
if a[i].val > a[j].val {
|
|
return false
|
|
}
|
|
return a[i].val < a[j].val
|
|
}
|