package main import ( "fmt" "image" "image/color" "image/draw" _ "image/jpeg" "image/png" _ "image/png" "math" "os" "sort" "time" ) const ( BlockSize int = 4 DistanceThreshold = 0.4 OffsetThreshold = 72 ForgeryThreshold = 250 ) var q4x4 = [][]float64{ {16.0, 10.0, 24.0, 51.0}, {14.0, 16.0, 40.0, 69.0}, {18.0, 37.0, 68.0, 103.0}, {49.0, 78.0, 103.0, 120.0}, } // pixel struct contains the discrete cosine transformation R,G,B,Y values. type pixel struct { r, g, b, y float64 } // dctPx stores the DCT pixel values. type dctPx [][]pixel // imageBlock contains the generated block upper left position and the stored image. type imageBlock struct { x int y int img image.Image } // vector struct contains the neighboring blocks top left position and the shift vectors between them. type vector struct { xa, ya int xb, yb int offsetX, offsetY float64 } // feature struct contains the feature blocks x, y position and their respective values. type feature struct { x int y int coef float64 } var ( features []feature vectors []vector cr, cg, cb, cy float64 ) func main() { start := time.Now() input, err := os.Open("parade_forged.jpg") defer input.Close() if err != nil { fmt.Printf("Error reading the image file: %v", err) } src, _, err := image.Decode(input) if err != nil { fmt.Printf("Error decoding the image: %v", err) } img := imgToNRGBA(src) output := image.NewRGBA(img.Bounds()) draw.Draw(output, image.Rect(0, 0, img.Bounds().Dx(), img.Bounds().Dy()), img, image.ZP, draw.Src) // Blur the image to eliminate the details. blurImg := StackBlur(img, 1) // Convert image to YUV color space yuv := convertRGBImageToYUV(blurImg) newImg := image.NewRGBA(yuv.Bounds()) draw.Draw(newImg, image.Rect(0, 0, yuv.Bounds().Dx(), yuv.Bounds().Dy()), yuv, image.ZP, draw.Src) dx, dy := yuv.Bounds().Max.X, yuv.Bounds().Max.Y bdx, bdy := (dx - BlockSize + 1), (dy - BlockSize + 1) n := math.Max(float64(dx), float64(dy)) var blocks []imageBlock for i := 0; i < bdx; i++ { for j := 0; j < bdy; j++ { r := image.Rect(i, j, i+BlockSize, j+BlockSize) block := newImg.SubImage(r).(*image.RGBA) blocks = append(blocks, imageBlock{x: i, y: j, img: block}) //draw.Draw(newImg, image.Rect(0, 0, yuv.Bounds().Max.X, yuv.Bounds().Max.Y), block, image.ZP, draw.Src) } } fmt.Printf("Len: %d\n", len(blocks)) for _, block := range blocks { // Average RGB value. var avr, avg, avb float64 b := block.img.(*image.RGBA) i0 := b.PixOffset(b.Bounds().Min.X, b.Bounds().Min.Y) i1 := i0 + b.Bounds().Dx() * 4 dctPixels := make(dctPx, BlockSize * BlockSize) for u := 0; u < BlockSize; u++ { dctPixels[u] = make([]pixel, BlockSize) for v := 0; v < BlockSize; v++ { for i := i0; i < i1; i += 4 { // Get the YUV converted image pixels yc, uc, vc, _ := b.Pix[i + 0], b.Pix[i + 2], b.Pix[i + 2], b.Pix[i + 3] // Convert YUV to RGB and obtain the R value r, g, b := color.YCbCrToRGB(yc, uc, vc) for x := 0; x < BlockSize; x++ { for y := 0; y < BlockSize; y++ { // Compute Discrete Cosine coefficients cr += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(r) cg += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(g) cb += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(b) cy += dct(float64(x), float64(y), float64(u), float64(v), float64(BlockSize)) * float64(yc) avr += float64(r) avg += float64(g) avb += float64(b) } } } // normalization alpha := func(a float64) float64 { if a == 0 { return math.Sqrt(1.0 / float64(n)) } else { return math.Sqrt(2.0 / float64(n)) } } cu, cv := float64(u), float64(v) cr *= alpha(cu) * alpha(cv) cg *= alpha(cu) * alpha(cv) cb *= alpha(cu) * alpha(cv) cy *= alpha(cu) * alpha(cv) dctPixels[u][v] = pixel{cr, cg, cb, cy} // Get the quantized DCT coefficients. dctPixels[u][v].r = (dctPixels[u][v].r / q4x4[u][v]) dctPixels[u][v].g = (dctPixels[u][v].g / q4x4[u][v]) dctPixels[u][v].b = (dctPixels[u][v].b / q4x4[u][v]) dctPixels[u][v].y = (dctPixels[u][v].y / q4x4[u][v]) } } avr /= float64(BlockSize * BlockSize) avg /= float64(BlockSize * BlockSize) avb /= float64(BlockSize * BlockSize) features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].y}) features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][1].y}) features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[1][0].y}) features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].r}) features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].g}) features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].b}) // Append average R,G,B values to the features vector(slice). features = append(features, feature{x: block.x, y: block.y, coef: avr}) features = append(features, feature{x: block.x, y: block.y, coef: avb}) features = append(features, feature{x: block.x, y: block.y, coef: avg}) } // Lexicographically sort the feature vectors sort.Sort(featVec(features)) for i := 0; i < len(features)-1; i++ { blockA, blockB := features[i], features[i+1] result := analyzeBlocks(blockA, blockB) if result != nil { vectors = append(vectors, *result) } } simBlocks := getSuspiciousBlocks(vectors) forgedBlocks, result := filterOutNeighbors(simBlocks) forgedImg := image.NewRGBA(img.Bounds()) overlay := color.RGBA{255, 0, 0, 255} for _, bl := range forgedBlocks { draw.Draw(forgedImg, image.Rect(bl.xa, bl.ya, bl.xa+BlockSize*2, bl.ya+BlockSize*2), &image.Uniform{overlay}, image.ZP, draw.Over) } final := StackBlur(imgToNRGBA(forgedImg), 10) draw.Draw(output, img.Bounds(), final, image.ZP, draw.Over) out, err := os.Create("output.png") if err != nil { fmt.Printf("Error creating output file: %v", err) } if err := png.Encode(out, output); err != nil { fmt.Printf("Error encoding image file: %v", err) } fmt.Println("\n", result) fmt.Printf("Features length: %d", len(features)) fmt.Printf("\nDone in: %.2fs\n", time.Since(start).Seconds()) } //convertRGBImageToYUV coverts the image from RGB to YUV color space. func convertRGBImageToYUV(img image.Image) image.Image { bounds := img.Bounds() dx, dy := bounds.Max.X, bounds.Max.Y yuvImage := image.NewRGBA(bounds) for x := 0; x < dx; x++ { for y := 0; y < dy; y++ { r, g, b, _ := img.At(x, y).RGBA() yc, uc, vc := color.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) yuvImage.Set(x, y, color.RGBA{uint8(yc), uint8(uc), uint8(vc), 255}) } } return yuvImage } // analyzeBlocks checks weather two neighboring blocks are considered almost identical. func analyzeBlocks(blockA, blockB feature) *vector { // Compute the euclidean distance between two neighboring blocks. dx := float64(blockA.x) - float64(blockB.x) dy := float64(blockA.y) - float64(blockB.y) dist := math.Sqrt(math.Pow(dx, 2) + math.Pow(dy, 2)) res := &vector{ xa: blockA.x, ya: blockA.y, xb: blockB.x, yb: blockB.y, offsetX: math.Abs(dx), offsetY: math.Abs(dy), } if dist < DistanceThreshold { return res } return nil } type offset struct { x, y float64 } type newVector []vector // getSuspiciousBlocks analyze pair of candidate and check for // similarity by computing the accumulative number of shift vectors. func getSuspiciousBlocks(vect []vector) newVector { var suspiciousBlocks newVector //For each pair of candidate compute the accumulative number of the corresponding shift vectors. duplicates := make(map[offset]int) for _, v := range vect { // Check for duplicate blocks offsetX := v.offsetX offsetY := v.offsetY offset := &offset{offsetX, offsetY} _, exists := duplicates[*offset] if exists { duplicates[*offset]++ } else { duplicates[*offset] = 1 } // If the accumulative number of corresponding shift vectors is greater than // a predefined threshold, the corresponding regions are marked as suspicious. if duplicates[*offset] > OffsetThreshold { suspiciousBlocks = append(suspiciousBlocks, vector{ v.xa, v.ya, v.xb, v.yb, v.offsetX, v.offsetY, }) } } fmt.Println("Blocks: ", len(suspiciousBlocks)) return suspiciousBlocks } // filterOutNeighbors filters out the neighboring blocks. func filterOutNeighbors(vect []vector) (newVector, bool) { var forgedBlocks newVector var isForged bool for i := 1; i < len(vect); i++ { blockA, blockB := vect[i-1], vect[i] // Continue only if two regions are not neighbors. if blockA.xa != blockB.xa && blockA.ya != blockB.ya { // Calculate the euclidean distance between both regions. dx := float64(blockA.xa - blockB.xa) dy := float64(blockA.ya - blockB.ya) dist := math.Sqrt(math.Pow(dx, 2) + math.Pow(dy, 2)) // Evaluate the euclidean distance distance between two regions // and make sure the distance is greater than a predefined threshold. if dist > ForgeryThreshold { forgedBlocks = append(forgedBlocks, vector{ blockA.xa, blockA.ya, blockA.xb, blockA.yb, blockA.offsetX, vect[i].offsetY, }) // We need to verify if an image is forged only once. if !isForged { isForged = true } } } } return forgedBlocks, isForged } // dct computes the Discrete Cosine Transform. // https://en.wikipedia.org/wiki/Discrete_cosine_transform func dct(x, y, u, v, w float64) float64 { a := math.Cos(((2.0*x + 1) * (u * math.Pi)) / (2 * w)) b := math.Cos(((2.0*y + 1) * (v * math.Pi)) / (2 * w)) return a * b } // idct computes the Inverse Discrete Cosine Transform. (Only for testing purposes.) func idct(u, v, x, y, w float64) float64 { // normalization alpha := func(a float64) float64 { if a == 0 { return 1.0 / math.Sqrt(2.0) } return 1.0 } return dct(u, v, x, y, w) * alpha(u) * alpha(v) } // round rounds float number to it's nearest integer part. func round(x float64) float64 { t := math.Trunc(x) if math.Abs(x-t) >= 0.5 { return t + math.Copysign(1, x) } return t } // clamp255 converts a float64 number to uint8. func clamp255(x float64) uint8 { if x < 0 { return 0 } if x > 255 { return 255 } return uint8(x) } // max returns the biggest value between two numbers. func max(x, y int) float64 { if x > y { return float64(x) } return float64(y) } // unique returns slice's unique values. func unique(intSlice []int) []int { keys := make(map[int]bool) list := []int{} for _, entry := range intSlice { if _, value := keys[entry]; !value { keys[entry] = true list = append(list, entry) } } return list } // Implement sorting function on feature vector type featVec []feature func (a featVec) Len() int { return len(a) } func (a featVec) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a featVec) Less(i, j int) bool { if a[i].coef < a[j].coef { return true } if a[i].coef > a[j].coef { return false } return a[i].coef < a[j].coef } func RGBtoYUV(r, g, b uint32) (uint32, uint32, uint32) { y := 0.299*float64(r) + 0.587*float64(g) + 0.114*float64(b) u := (((float64(b) - float64(y)) * 0.493) + 111) / 222 * 255 v := (((float64(r) - float64(y)) * 0.877) + 155) / 312 * 255 return uint32(y), uint32(u), uint32(v) } func YUVtoRGB(y, u, v uint32) (uint32, uint32, uint32) { r := float64(y) + (1.13983 * float64(v)) g := float64(y) - (0.39465 * float64(u)) - (0.58060 * float64(v)) b := float64(y) + (2.03211 * float64(u)) return uint32(r), uint32(g), uint32(b) } // Converts any image type to *image.NRGBA with min-point at (0, 0). func imgToNRGBA(img image.Image) *image.NRGBA { srcBounds := img.Bounds() if srcBounds.Min.X == 0 && srcBounds.Min.Y == 0 { if src0, ok := img.(*image.NRGBA); ok { return src0 } } srcMinX := srcBounds.Min.X srcMinY := srcBounds.Min.Y dstBounds := srcBounds.Sub(srcBounds.Min) dstW := dstBounds.Dx() dstH := dstBounds.Dy() dst := image.NewNRGBA(dstBounds) switch src := img.(type) { case *image.NRGBA: rowSize := srcBounds.Dx() * 4 for dstY := 0; dstY < dstH; dstY++ { di := dst.PixOffset(0, dstY) si := src.PixOffset(srcMinX, srcMinY+dstY) for dstX := 0; dstX < dstW; dstX++ { copy(dst.Pix[di:di+rowSize], src.Pix[si:si+rowSize]) } } case *image.YCbCr: for dstY := 0; dstY < dstH; dstY++ { di := dst.PixOffset(0, dstY) for dstX := 0; dstX < dstW; dstX++ { srcX := srcMinX + dstX srcY := srcMinY + dstY siy := src.YOffset(srcX, srcY) sic := src.COffset(srcX, srcY) r, g, b := color.YCbCrToRGB(src.Y[siy], src.Cb[sic], src.Cr[sic]) dst.Pix[di+0] = r dst.Pix[di+1] = g dst.Pix[di+2] = b dst.Pix[di+3] = 0xff di += 4 } } default: for dstY := 0; dstY < dstH; dstY++ { di := dst.PixOffset(0, dstY) for dstX := 0; dstX < dstW; dstX++ { c := color.NRGBAModel.Convert(img.At(srcMinX+dstX, srcMinY+dstY)).(color.NRGBA) dst.Pix[di+0] = c.R dst.Pix[di+1] = c.G dst.Pix[di+2] = c.B dst.Pix[di+3] = c.A di += 4 } } } return dst }