Files
delayqueue/delayqueue.go
2024-10-04 15:27:59 +08:00

754 lines
21 KiB
Go

package delayqueue
import (
"errors"
"fmt"
"log"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/google/uuid"
)
// DelayQueue is a message queue supporting delayed/scheduled delivery based on redis
type DelayQueue struct {
// name for this Queue. Make sure the name is unique in redis database
name string
redisCli RedisCli
cb func(string) bool
pendingKey string // sorted set: message id -> delivery time
readyKey string // list
unAckKey string // sorted set: message id -> retry time
retryKey string // list
retryCountKey string // hash: message id -> remain retry count
garbageKey string // set: message id
useHashTag bool
ticker *time.Ticker
logger *log.Logger
close chan struct{}
running int32
maxConsumeDuration time.Duration // default 5 seconds
msgTTL time.Duration // default 1 hour
defaultRetryCount uint // default 3
fetchInterval time.Duration // default 1 second
fetchLimit uint // default no limit
fetchCount int32 // actually running task number
concurrent uint // default 1, executed serially
sha1map map[string]string
sha1mapMu *sync.RWMutex
scriptPreload bool
// for batch consume
consumeBuffer chan string
eventListener EventListener
}
// NilErr represents redis nil
var NilErr = errors.New("nil")
// RedisCli is abstraction for redis client, required commands only not all commands
type RedisCli interface {
// Eval sends lua script to redis
// args should be string, integer or float
// returns string, int64, []interface{} (elements can be string or int64)
Eval(script string, keys []string, args []interface{}) (interface{}, error)
Set(key string, value string, expiration time.Duration) error
// Get represents redis command GET
// please NilErr when no such key in redis
Get(key string) (string, error)
Del(keys []string) error
HSet(key string, field string, value string) error
HDel(key string, fields []string) error
SMembers(key string) ([]string, error)
SRem(key string, members []string) error
ZAdd(key string, values map[string]float64) error
ZRem(key string, fields []string) error
ZCard(key string) (int64, error)
LLen(key string) (int64, error)
// Publish used for monitor only
Publish(channel string, payload string) error
// Subscribe used for monitor only
// returns: payload channel, subscription closer, error; the subscription closer should close payload channel as well
Subscribe(channel string) (payloads <-chan string, close func(), err error)
// ScriptLoad call `script load` command
ScriptLoad(script string) (string, error)
// EvalSha run preload scripts
// If there is no preload scripts please return error with message "NOSCRIPT"
EvalSha(sha1 string, keys []string, args []interface{}) (interface{}, error)
}
type hashTagKeyOpt int
// CallbackFunc receives and consumes messages
// returns true to confirm successfully consumed, false to re-deliver this message
type CallbackFunc = func(string) bool
// UseHashTagKey add hashtags to redis keys to ensure all keys of this queue are allocated in the same hash slot.
// If you are using Codis/AliyunRedisCluster/TencentCloudRedisCluster, add this option to NewQueue
// WARNING! Changing (add or remove) this option will cause DelayQueue failing to read existed data in redis
// see more: https://redis.io/docs/reference/cluster-spec/#hash-tags
func UseHashTagKey() interface{} {
return hashTagKeyOpt(1)
}
// NewQueue0 creates a new queue, use DelayQueue.StartConsume to consume or DelayQueue.SendScheduleMsg to publish message
// callback returns true to confirm successful consumption. If callback returns false or not return within maxConsumeDuration, DelayQueue will re-deliver this message
func NewQueue0(name string, cli RedisCli, opts ...interface{}) *DelayQueue {
if name == "" {
panic("name is required")
}
if cli == nil {
panic("cli is required")
}
useHashTag := false
var callback CallbackFunc = nil
for _, opt := range opts {
switch o := opt.(type) {
case hashTagKeyOpt:
useHashTag = true
case CallbackFunc:
callback = o
}
}
var keyPrefix string
if useHashTag {
keyPrefix = "{dp:" + name + "}"
} else {
keyPrefix = "dp:" + name
}
return &DelayQueue{
name: name,
redisCli: cli,
cb: callback,
pendingKey: keyPrefix + ":pending",
readyKey: keyPrefix + ":ready",
unAckKey: keyPrefix + ":unack",
retryKey: keyPrefix + ":retry",
retryCountKey: keyPrefix + ":retry:cnt",
garbageKey: keyPrefix + ":garbage",
useHashTag: useHashTag,
close: nil,
maxConsumeDuration: 5 * time.Second,
msgTTL: time.Hour,
logger: log.Default(),
defaultRetryCount: 3,
fetchInterval: time.Second,
concurrent: 1,
sha1map: make(map[string]string),
sha1mapMu: &sync.RWMutex{},
scriptPreload: true,
}
}
// WithCallback set callback for queue to receives and consumes messages
// callback returns true to confirm successfully consumed, false to re-deliver this message
func (q *DelayQueue) WithCallback(callback CallbackFunc) *DelayQueue {
q.cb = callback
return q
}
// WithLogger customizes logger for queue
func (q *DelayQueue) WithLogger(logger *log.Logger) *DelayQueue {
q.logger = logger
return q
}
// WithFetchInterval customizes the interval at which consumer fetch message from redis
func (q *DelayQueue) WithFetchInterval(d time.Duration) *DelayQueue {
q.fetchInterval = d
return q
}
// WithScriptPreload use script load command preload scripts to redis
func (q *DelayQueue) WithScriptPreload(flag bool) *DelayQueue {
q.scriptPreload = flag
return q
}
// WithMaxConsumeDuration customizes max consume duration
// If no acknowledge received within WithMaxConsumeDuration after message delivery, DelayQueue will try to deliver this message again
func (q *DelayQueue) WithMaxConsumeDuration(d time.Duration) *DelayQueue {
q.maxConsumeDuration = d
return q
}
// WithFetchLimit limits the max number of processing messages, 0 means no limit
func (q *DelayQueue) WithFetchLimit(limit uint) *DelayQueue {
q.fetchLimit = limit
return q
}
// WithConcurrent sets the number of concurrent consumers
func (q *DelayQueue) WithConcurrent(c uint) *DelayQueue {
if c == 0 {
panic("concurrent cannot be 0")
}
q.assertNotRunning()
q.concurrent = c
return q
}
// WithDefaultRetryCount customizes the max number of retry, it effects of messages in this queue
// use WithRetryCount during DelayQueue.SendScheduleMsg or DelayQueue.SendDelayMsg to specific retry count of particular message
func (q *DelayQueue) WithDefaultRetryCount(count uint) *DelayQueue {
q.defaultRetryCount = count
return q
}
func (q *DelayQueue) genMsgKey(idStr string) string {
if q.useHashTag {
return "{dp:" + q.name + "}" + ":msg:" + idStr
}
return "dp:" + q.name + ":msg:" + idStr
}
type retryCountOpt int
// WithRetryCount set retry count for a msg
// example: queue.SendDelayMsg(payload, duration, delayqueue.WithRetryCount(3))
func WithRetryCount(count int) interface{} {
return retryCountOpt(count)
}
type msgTTLOpt time.Duration
// WithMsgTTL set ttl for a msg
// example: queue.SendDelayMsg(payload, duration, delayqueue.WithMsgTTL(Hour))
func WithMsgTTL(d time.Duration) interface{} {
return msgTTLOpt(d)
}
// SendScheduleMsg submits a message delivered at given time
func (q *DelayQueue) SendScheduleMsg(payload string, t time.Time, opts ...interface{}) error {
// parse options
retryCount := q.defaultRetryCount
for _, opt := range opts {
switch o := opt.(type) {
case retryCountOpt:
retryCount = uint(o)
case msgTTLOpt:
q.msgTTL = time.Duration(o)
}
}
// generate id
idStr := uuid.Must(uuid.NewRandom()).String()
now := time.Now()
// store msg
msgTTL := t.Sub(now) + q.msgTTL // delivery + q.msgTTL
err := q.redisCli.Set(q.genMsgKey(idStr), payload, msgTTL)
if err != nil {
return fmt.Errorf("store msg failed: %v", err)
}
// store retry count
err = q.redisCli.HSet(q.retryCountKey, idStr, strconv.Itoa(int(retryCount)))
if err != nil {
return fmt.Errorf("store retry count failed: %v", err)
}
// put to pending
err = q.redisCli.ZAdd(q.pendingKey, map[string]float64{idStr: float64(t.Unix())})
if err != nil {
return fmt.Errorf("push to pending failed: %v", err)
}
q.reportEvent(NewMessageEvent, 1)
return nil
}
// SendDelayMsg submits a message delivered after given duration
func (q *DelayQueue) SendDelayMsg(payload string, duration time.Duration, opts ...interface{}) error {
t := time.Now().Add(duration)
return q.SendScheduleMsg(payload, t, opts...)
}
func (q *DelayQueue) loadScript(script string) (string, error) {
sha1, err := q.redisCli.ScriptLoad(script)
if err != nil {
return "", err
}
q.sha1mapMu.Lock()
q.sha1map[script] = sha1
q.sha1mapMu.Unlock()
return sha1, nil
}
func (q *DelayQueue) eval(script string, keys []string, args []interface{}) (interface{}, error) {
if !q.scriptPreload {
return q.redisCli.Eval(script, keys, args)
}
var err error
q.sha1mapMu.RLock()
sha1, ok := q.sha1map[script]
q.sha1mapMu.RUnlock()
if !ok {
sha1, err = q.loadScript(script)
if err != nil {
return nil, err
}
}
result, err := q.redisCli.EvalSha(sha1, keys, args)
if err == nil {
return result, err
}
// script not loaded, reload it
// It is possible to access a node in the cluster that has no pre-loaded scripts.
if strings.HasPrefix(err.Error(), "NOSCRIPT") {
sha1, err = q.loadScript(script)
if err != nil {
return nil, err
}
// try again
result, err = q.redisCli.EvalSha(sha1, keys, args)
}
return result, err
}
// pending2ReadyScript atomically moves messages from pending to ready
// keys: pendingKey, readyKey
// argv: currentTime
// returns: ready message number
const pending2ReadyScript = `
local msgs = redis.call('ZRangeByScore', KEYS[1], '0', ARGV[1]) -- get ready msg
if (#msgs == 0) then return end
local args2 = {} -- keys to push into ready
for _,v in ipairs(msgs) do
table.insert(args2, v)
if (#args2 == 4000) then
redis.call('LPush', KEYS[2], unpack(args2))
args2 = {}
end
end
if (#args2 > 0) then
redis.call('LPush', KEYS[2], unpack(args2))
end
redis.call('ZRemRangeByScore', KEYS[1], '0', ARGV[1]) -- remove msgs from pending
return #msgs
`
func (q *DelayQueue) pending2Ready() error {
now := time.Now().Unix()
keys := []string{q.pendingKey, q.readyKey}
raw, err := q.eval(pending2ReadyScript, keys, []interface{}{now})
if err != nil && err != NilErr {
return fmt.Errorf("pending2ReadyScript failed: %v", err)
}
count, ok := raw.(int64)
if ok {
q.reportEvent(ReadyEvent, int(count))
}
return nil
}
// ready2UnackScript atomically moves messages from ready to unack
// keys: readyKey/retryKey, unackKey
// argv: retryTime
const ready2UnackScript = `
local msg = redis.call('RPop', KEYS[1])
if (not msg) then return end
redis.call('ZAdd', KEYS[2], ARGV[1], msg)
return msg
`
func (q *DelayQueue) ready2Unack() (string, error) {
retryTime := time.Now().Add(q.maxConsumeDuration).Unix()
keys := []string{q.readyKey, q.unAckKey}
ret, err := q.eval(ready2UnackScript, keys, []interface{}{retryTime})
if err == NilErr {
return "", err
}
if err != nil {
return "", fmt.Errorf("ready2UnackScript failed: %v", err)
}
str, ok := ret.(string)
if !ok {
return "", fmt.Errorf("illegal result: %#v", ret)
}
q.reportEvent(DeliveredEvent, 1)
return str, nil
}
func (q *DelayQueue) retry2Unack() (string, error) {
retryTime := time.Now().Add(q.maxConsumeDuration).Unix()
keys := []string{q.retryKey, q.unAckKey}
ret, err := q.eval(ready2UnackScript, keys, []interface{}{retryTime, q.retryKey, q.unAckKey})
if err == NilErr {
return "", NilErr
}
if err != nil {
return "", fmt.Errorf("ready2UnackScript failed: %v", err)
}
str, ok := ret.(string)
if !ok {
return "", fmt.Errorf("illegal result: %#v", ret)
}
return str, nil
}
func (q *DelayQueue) callback(idStr string) error {
payload, err := q.redisCli.Get(q.genMsgKey(idStr))
if err == NilErr {
return nil
}
if err != nil {
// Is an IO error?
return fmt.Errorf("get message payload failed: %v", err)
}
ack := q.cb(payload)
if ack {
err = q.ack(idStr)
} else {
err = q.nack(idStr)
}
return err
}
func (q *DelayQueue) ack(idStr string) error {
atomic.AddInt32(&q.fetchCount, -1)
err := q.redisCli.ZRem(q.unAckKey, []string{idStr})
if err != nil {
return fmt.Errorf("remove from unack failed: %v", err)
}
// msg key has ttl, ignore result of delete
_ = q.redisCli.Del([]string{q.genMsgKey(idStr)})
_ = q.redisCli.HDel(q.retryCountKey, []string{idStr})
q.reportEvent(AckEvent, 1)
return nil
}
func (q *DelayQueue) nack(idStr string) error {
atomic.AddInt32(&q.fetchCount, -1)
// update retry time as now, unack2Retry will move it to retry immediately
err := q.redisCli.ZAdd(q.unAckKey, map[string]float64{
idStr: float64(time.Now().Unix()),
})
if err != nil {
return fmt.Errorf("negative ack failed: %v", err)
}
q.reportEvent(NackEvent, 1)
return nil
}
// unack2RetryScript atomically moves messages from unack to retry which remaining retry count greater than 0,
// and moves messages from unack to garbage which retry count is 0
// Because DelayQueue cannot determine garbage message before eval unack2RetryScript, so it cannot pass keys parameter to redisCli.Eval
// Therefore unack2RetryScript moves garbage message to garbageKey instead of deleting directly
// keys: unackKey, retryCountKey, retryKey, garbageKey
// argv: currentTime
// returns: {retryMsgs, failMsgs}
const unack2RetryScript = `
local unack2retry = function(msgs)
local retryCounts = redis.call('HMGet', KEYS[2], unpack(msgs)) -- get retry count
local retryMsgs = 0
local failMsgs = 0
for i,v in ipairs(retryCounts) do
local k = msgs[i]
if v ~= false and v ~= nil and v ~= '' and tonumber(v) > 0 then
redis.call("HIncrBy", KEYS[2], k, -1) -- reduce retry count
redis.call("LPush", KEYS[3], k) -- add to retry
retryMsgs = retryMsgs + 1
else
redis.call("HDel", KEYS[2], k) -- del retry count
redis.call("SAdd", KEYS[4], k) -- add to garbage
failMsgs = failMsgs + 1
end
end
return retryMsgs, failMsgs
end
local retryMsgs = 0
local failMsgs = 0
local msgs = redis.call('ZRangeByScore', KEYS[1], '0', ARGV[1]) -- get retry msg
if (#msgs == 0) then return end
if #msgs < 4000 then
local d1, d2 = unack2retry(msgs)
retryMsgs = retryMsgs + d1
failMsgs = failMsgs + d2
else
local buf = {}
for _,v in ipairs(msgs) do
table.insert(buf, v)
if #buf == 4000 then
local d1, d2 = unack2retry(buf)
retryMsgs = retryMsgs + d1
failMsgs = failMsgs + d2
buf = {}
end
end
if (#buf > 0) then
local d1, d2 = unack2retry(buf)
retryMsgs = retryMsgs + d1
failMsgs = failMsgs + d2
end
end
redis.call('ZRemRangeByScore', KEYS[1], '0', ARGV[1]) -- remove msgs from unack
return {retryMsgs, failMsgs}
`
func (q *DelayQueue) unack2Retry() error {
keys := []string{q.unAckKey, q.retryCountKey, q.retryKey, q.garbageKey}
now := time.Now()
raw, err := q.eval(unack2RetryScript, keys, []interface{}{now.Unix()})
if err != nil && err != NilErr {
return fmt.Errorf("unack to retry script failed: %v", err)
}
infos, ok := raw.([]interface{})
if ok && len(infos) == 2 {
retryCount, ok := infos[0].(int64)
if ok {
q.reportEvent(RetryEvent, int(retryCount))
}
failCount, ok := infos[1].(int64)
if ok {
q.reportEvent(FinalFailedEvent, int(failCount))
}
}
return nil
}
func (q *DelayQueue) garbageCollect() error {
msgIds, err := q.redisCli.SMembers(q.garbageKey)
if err != nil {
return fmt.Errorf("smembers failed: %v", err)
}
if len(msgIds) == 0 {
return nil
}
// allow concurrent clean
msgKeys := make([]string, 0, len(msgIds))
for _, idStr := range msgIds {
msgKeys = append(msgKeys, q.genMsgKey(idStr))
}
err = q.redisCli.Del(msgKeys)
if err != nil && err != NilErr {
return fmt.Errorf("del msgs failed: %v", err)
}
err = q.redisCli.SRem(q.garbageKey, msgIds)
if err != nil && err != NilErr {
return fmt.Errorf("remove from garbage key failed: %v", err)
}
return nil
}
func (q *DelayQueue) beforeConsume() ([]string, error) {
// pending to ready
err := q.pending2Ready()
if err != nil {
return nil, err
}
// ready2Unack
// prioritize new message consumption to avoid avalanches
ids := make([]string, 0, q.fetchLimit)
var fetchCount int32
for {
fetchCount = atomic.LoadInt32(&q.fetchCount)
if q.fetchLimit > 0 && fetchCount >= int32(q.fetchLimit) {
break
}
idStr, err := q.ready2Unack()
if err == NilErr { // consumed all
break
}
if err != nil {
return nil, err
}
ids = append(ids, idStr)
atomic.AddInt32(&q.fetchCount, 1)
}
// retry2Unack
if fetchCount < int32(q.fetchLimit) || q.fetchLimit == 0 {
for {
fetchCount = atomic.LoadInt32(&q.fetchCount)
if q.fetchLimit > 0 && fetchCount >= int32(q.fetchLimit) {
break
}
idStr, err := q.retry2Unack()
if err == NilErr { // consumed all
break
}
if err != nil {
return nil, err
}
ids = append(ids, idStr)
atomic.AddInt32(&q.fetchCount, 1)
}
}
return ids, nil
}
func (q *DelayQueue) afterConsume() error {
// unack to retry
err := q.unack2Retry()
if err != nil {
return err
}
err = q.garbageCollect()
if err != nil {
return err
}
return nil
}
func (q *DelayQueue) setRunning() {
atomic.StoreInt32(&q.running, 1)
}
func (q *DelayQueue) setNotRunning() {
atomic.StoreInt32(&q.running, 0)
}
func (q *DelayQueue) assertNotRunning() {
running := atomic.LoadInt32(&q.running)
if running > 0 {
panic("operation cannot be performed during running")
}
}
func (q *DelayQueue) goWithRecover(fn func()) {
go func() {
defer func() {
if err := recover(); err != nil {
q.logger.Printf("panic: %v\n", err)
}
}()
fn()
}()
}
// StartConsume creates a goroutine to consume message from DelayQueue
// use `<-done` to wait consumer stopping
// If there is no callback set, StartConsume will panic
func (q *DelayQueue) StartConsume() (done <-chan struct{}) {
if q.cb == nil {
panic("this instance has no callback")
}
q.close = make(chan struct{}, 1)
q.setRunning()
q.ticker = time.NewTicker(q.fetchInterval)
q.consumeBuffer = make(chan string, q.fetchLimit)
done0 := make(chan struct{})
// start worker
for i := 0; i < int(q.concurrent); i++ {
q.goWithRecover(func() {
for id := range q.consumeBuffer {
q.callback(id)
q.afterConsume()
}
})
}
// start main loop
go func() {
tickerLoop:
for {
select {
case <-q.ticker.C:
ids, err := q.beforeConsume()
if err != nil {
log.Printf("consume error: %v", err)
}
q.goWithRecover(func() {
for _, id := range ids {
q.consumeBuffer <- id
}
})
case <-q.close:
break tickerLoop
}
}
close(done0)
}()
return done0
}
// StopConsume stops consumer goroutine
func (q *DelayQueue) StopConsume() {
close(q.close)
q.setNotRunning()
if q.ticker != nil {
q.ticker.Stop()
}
close(q.consumeBuffer)
}
// GetPendingCount returns the number of pending messages
func (q *DelayQueue) GetPendingCount() (int64, error) {
return q.redisCli.ZCard(q.pendingKey)
}
// GetReadyCount returns the number of messages which have arrived delivery time but but have not been delivered
func (q *DelayQueue) GetReadyCount() (int64, error) {
return q.redisCli.LLen(q.readyKey)
}
// GetProcessingCount returns the number of messages which are being processed
func (q *DelayQueue) GetProcessingCount() (int64, error) {
return q.redisCli.ZCard(q.unAckKey)
}
// EventListener which will be called when events occur
// This Listener can be used to monitor running status
type EventListener interface {
// OnEvent will be called when events occur
OnEvent(*Event)
}
// ListenEvent register a listener which will be called when events occur,
// so it can be used to monitor running status
//
// But It can ONLY receive events from the CURRENT INSTANCE,
// if you want to listen to all events in queue, just use Monitor.ListenEvent
//
// There can be AT MOST ONE EventListener in an DelayQueue instance.
// If you are using customized listener, Monitor will stop working
func (q *DelayQueue) ListenEvent(listener EventListener) {
q.eventListener = listener
}
// RemoveListener stops reporting events to EventListener
func (q *DelayQueue) DisableListener() {
q.eventListener = nil
}
func (q *DelayQueue) reportEvent(code int, count int) {
listener := q.eventListener // eventListener may be changed during running
if listener != nil && count > 0 {
event := &Event{
Code: code,
Timestamp: time.Now().Unix(),
MsgCount: count,
}
listener.OnEvent(event)
}
}
// pubsubListener receives events and reports them through redis pubsub for monitoring
type pubsubListener struct {
redisCli RedisCli
reportChan string
}
func genReportChannel(name string) string {
return "dq:" + name + ":reportEvents"
}
// EnableReport enables reporting to monitor
func (q *DelayQueue) EnableReport() {
reportChan := genReportChannel(q.name)
q.ListenEvent(&pubsubListener{
redisCli: q.redisCli,
reportChan: reportChan,
})
}
// DisableReport stops reporting to monitor
func (q *DelayQueue) DisableReport() {
q.DisableListener()
}
func (l *pubsubListener) OnEvent(event *Event) {
payload := encodeEvent(event)
l.redisCli.Publish(l.reportChan, payload)
}