mirror of
https://github.com/esimov/caire.git
synced 2025-09-26 20:41:14 +08:00
385 lines
11 KiB
Go
385 lines
11 KiB
Go
package caire
|
|
|
|
import (
|
|
"fmt"
|
|
"image"
|
|
"image/color"
|
|
"image/draw"
|
|
"math"
|
|
|
|
"github.com/esimov/caire/utils"
|
|
pigo "github.com/esimov/pigo/core"
|
|
)
|
|
|
|
// SeamCarver defines the Carve interface method, which have to be
|
|
// implemented by the Processor struct.
|
|
type SeamCarver interface {
|
|
Resize(*image.NRGBA) (image.Image, error)
|
|
}
|
|
|
|
// maxFaceDetAttempts defines the maximum number of attempts of face detections
|
|
const maxFaceDetAttempts = 20
|
|
|
|
var (
|
|
detAttempts int
|
|
isFaceDetected bool
|
|
)
|
|
|
|
var (
|
|
sobel *image.NRGBA
|
|
energySeams = make([][]Seam, 0)
|
|
)
|
|
|
|
// Carver is the main entry struct having as parameters the newly generated image width, height and seam points.
|
|
type Carver struct {
|
|
Points []float64
|
|
Seams []Seam
|
|
Width int
|
|
Height int
|
|
}
|
|
|
|
// Seam struct contains the seam pixel coordinates.
|
|
type Seam struct {
|
|
X int
|
|
Y int
|
|
}
|
|
|
|
// NewCarver returns an initialized Carver structure.
|
|
func NewCarver(width, height int) *Carver {
|
|
return &Carver{
|
|
Points: make([]float64, width*height),
|
|
Seams: []Seam{},
|
|
Width: width,
|
|
Height: height,
|
|
}
|
|
}
|
|
|
|
// Get energy pixel value.
|
|
func (c *Carver) get(x, y int) float64 {
|
|
px := x + y*c.Width
|
|
return c.Points[px]
|
|
}
|
|
|
|
// Set energy pixel value.
|
|
func (c *Carver) set(x, y int, px float64) {
|
|
idx := x + y*c.Width
|
|
c.Points[idx] = px
|
|
}
|
|
|
|
// ComputeSeams compute the minimum energy level based on the following logic:
|
|
//
|
|
// - traverse the image from the second row to the last row
|
|
// and compute the cumulative minimum energy M for all possible
|
|
// connected seams for each entry (i, j).
|
|
//
|
|
// - the minimum energy level is calculated by summing up the current pixel value
|
|
// with the minimum pixel value of the neighboring pixels from the previous row.
|
|
func (c *Carver) ComputeSeams(p *Processor, img *image.NRGBA) (*image.NRGBA, error) {
|
|
width, height := img.Bounds().Dx(), img.Bounds().Dy()
|
|
sobel = c.SobelDetector(img, float64(p.SobelThreshold))
|
|
|
|
dets := []pigo.Detection{}
|
|
|
|
if p.FaceDetector != nil && p.FaceDetect && detAttempts < maxFaceDetAttempts {
|
|
var ratio float64
|
|
|
|
if width < height {
|
|
ratio = float64(width) / float64(height)
|
|
} else {
|
|
ratio = float64(height) / float64(width)
|
|
}
|
|
minSize := float64(utils.Min(width, height)) * ratio / 3
|
|
|
|
// Transform the image to pixel array.
|
|
pixels := rgbToGrayscale(img)
|
|
|
|
cParams := pigo.CascadeParams{
|
|
MinSize: int(minSize),
|
|
MaxSize: utils.Min(width, height),
|
|
ShiftFactor: 0.1,
|
|
ScaleFactor: 1.1,
|
|
|
|
ImageParams: pigo.ImageParams{
|
|
Pixels: pixels,
|
|
Rows: height,
|
|
Cols: width,
|
|
Dim: width,
|
|
},
|
|
}
|
|
if p.vRes {
|
|
p.FaceAngle = 0.2
|
|
}
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
dets = p.FaceDetector.RunCascade(cParams, p.FaceAngle)
|
|
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
dets = p.FaceDetector.ClusterDetections(dets, 0.1)
|
|
|
|
if len(dets) == 0 {
|
|
// Retry detecting faces for a certain amount of time.
|
|
if detAttempts < maxFaceDetAttempts {
|
|
detAttempts++
|
|
}
|
|
} else {
|
|
detAttempts = 0
|
|
isFaceDetected = true
|
|
}
|
|
}
|
|
|
|
// Traverse the pixel data of the binary file used for protecting the regions
|
|
// which we do not want to be altered by the seam carver,
|
|
// obtain the white patches and apply it to the sobel image.
|
|
if len(p.MaskPath) > 0 && p.Mask != nil {
|
|
p.DebugMask = image.NewNRGBA(img.Bounds())
|
|
|
|
for i := 0; i < width*height; i++ {
|
|
x := i % width
|
|
y := (i - x) / width
|
|
|
|
r, g, b, _ := p.Mask.At(x, y).RGBA()
|
|
if r>>8 == 0xff && g>>8 == 0xff && b>>8 == 0xff {
|
|
if isFaceDetected {
|
|
// Reduce the brightness of the mask with a small factor if human faces are detected.
|
|
// This way we can avoid the seam carver to remove
|
|
// the pixels inside the detected human faces.
|
|
sobel.Set(x, y, color.RGBA{R: 225, G: 225, B: 225, A: 255})
|
|
} else {
|
|
sobel.Set(x, y, color.White)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Traverse the pixel data of the binary file used to remove the image regions
|
|
// we do not want to be retained in the final image, obtain the white patches,
|
|
// but this time inverse the colors to black and merge it back to the sobel image.
|
|
if len(p.RMaskPath) > 0 && p.RMask != nil {
|
|
p.DebugMask = image.NewNRGBA(img.Bounds())
|
|
|
|
for i := 0; i < width*height; i++ {
|
|
x := i % width
|
|
y := (i - x) / width
|
|
|
|
r, g, b, _ := p.RMask.At(x, y).RGBA()
|
|
// Replace the white pixels with black.
|
|
if r>>8 == 0xff && g>>8 == 0xff && b>>8 == 0xff {
|
|
if isFaceDetected {
|
|
// Reduce the brightness of the mask with a small factor if human faces are detected.
|
|
// This way we can avoid the seam carver to remove
|
|
// the pixels inside the detected human faces.
|
|
sobel.Set(x, y, color.RGBA{R: 25, G: 25, B: 25, A: 255})
|
|
} else {
|
|
sobel.Set(x, y, color.Black)
|
|
}
|
|
p.DebugMask.Set(x, y, color.Black)
|
|
} else {
|
|
p.DebugMask.Set(x, y, color.Transparent)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Iterate over the detected faces and fill out the rectangles with white.
|
|
// We need to trick the sobel detector to consider them as important image parts.
|
|
for _, face := range dets {
|
|
if (p.NewHeight != 0 && p.NewHeight < face.Scale) ||
|
|
(p.NewWidth != 0 && p.NewWidth < face.Scale) {
|
|
return nil, fmt.Errorf("%s %s",
|
|
"cannot resize the image to the specified dimension without face deformation.\n",
|
|
"\tRemove the face detection option in case you still wish to resize the image.")
|
|
}
|
|
if face.Q > 5.0 {
|
|
scale := int(float64(face.Scale) / 1.7)
|
|
rect := image.Rect(
|
|
face.Col-scale,
|
|
face.Row-scale,
|
|
face.Col+scale,
|
|
face.Row+scale,
|
|
)
|
|
p.DebugMask = image.NewNRGBA(img.Bounds())
|
|
draw.Draw(sobel, rect, &image.Uniform{color.White}, image.Point{}, draw.Src)
|
|
draw.Draw(p.DebugMask, rect, &image.Uniform{color.White}, image.Point{}, draw.Src)
|
|
}
|
|
}
|
|
|
|
// Increase the energy value for each of the selected seam from the seams table
|
|
// in order to avoid picking the same seam over and over again.
|
|
// We expand the energy level of the selected seams to have a better redistribution.
|
|
if len(energySeams) > 0 {
|
|
for i := 0; i < len(energySeams); i++ {
|
|
for _, seam := range energySeams[i] {
|
|
sobel.Set(seam.X, seam.Y, &image.Uniform{color.White})
|
|
}
|
|
}
|
|
}
|
|
|
|
var srcImg *image.NRGBA
|
|
if p.BlurRadius > 0 {
|
|
srcImg = image.NewNRGBA(img.Bounds())
|
|
err := Stackblur(srcImg, sobel, uint32(p.BlurRadius))
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error bluring the image: %w", err)
|
|
}
|
|
} else {
|
|
srcImg = sobel
|
|
}
|
|
|
|
for x := 0; x < c.Width; x++ {
|
|
for y := 0; y < c.Height; y++ {
|
|
r, _, _, a := srcImg.At(x, y).RGBA()
|
|
c.set(x, y, float64(r)/float64(a))
|
|
}
|
|
}
|
|
|
|
var left, middle, right float64
|
|
|
|
// Traverse the image from top to bottom and compute the minimum energy level.
|
|
// For each pixel in a row we compute the energy of the current pixel
|
|
// plus the energy of one of the three possible pixels above it.
|
|
for y := 1; y < c.Height; y++ {
|
|
for x := 1; x < c.Width-1; x++ {
|
|
left = c.get(x-1, y-1)
|
|
middle = c.get(x, y-1)
|
|
right = c.get(x+1, y-1)
|
|
min := math.Min(math.Min(left, middle), right)
|
|
// Set the minimum energy level.
|
|
c.set(x, y, c.get(x, y)+min)
|
|
}
|
|
// Special cases: pixels are far left or far right
|
|
left := c.get(0, y) + math.Min(c.get(0, y-1), c.get(1, y-1))
|
|
c.set(0, y, left)
|
|
right := c.get(0, y) + math.Min(c.get(c.Width-1, y-1), c.get(c.Width-2, y-1))
|
|
c.set(c.Width-1, y, right)
|
|
}
|
|
return srcImg, nil
|
|
}
|
|
|
|
// FindLowestEnergySeams find the lowest vertical energy seam.
|
|
func (c *Carver) FindLowestEnergySeams(p *Processor) []Seam {
|
|
// Find the lowest cost seam from the energy matrix starting from the last row.
|
|
var (
|
|
min = math.MaxFloat64
|
|
px int
|
|
)
|
|
seams := make([]Seam, 0)
|
|
|
|
// Find the pixel on the last row with the minimum cumulative energy and use this as the starting pixel
|
|
for x := 0; x < c.Width; x++ {
|
|
seam := c.get(x, c.Height-1)
|
|
if seam < min {
|
|
min = seam
|
|
px = x
|
|
}
|
|
}
|
|
|
|
seams = append(seams, Seam{X: px, Y: c.Height - 1})
|
|
var left, middle, right float64
|
|
|
|
// Walk up in the matrix table, check the immediate three top pixels seam level
|
|
// and add that one which has the lowest cumulative energy.
|
|
for y := c.Height - 2; y >= 0; y-- {
|
|
middle = c.get(px, y)
|
|
// Leftmost seam, no child to the left
|
|
if px == 0 {
|
|
right = c.get(px+1, y)
|
|
if right < middle {
|
|
px++
|
|
}
|
|
// Rightmost seam, no child to the right
|
|
} else if px == c.Width-1 {
|
|
left = c.get(px-1, y)
|
|
if left < middle {
|
|
px--
|
|
}
|
|
} else {
|
|
left = c.get(px-1, y)
|
|
right = c.get(px+1, y)
|
|
min := math.Min(math.Min(left, middle), right)
|
|
|
|
if min == left {
|
|
px--
|
|
} else if min == right {
|
|
px++
|
|
}
|
|
}
|
|
seams = append(seams, Seam{X: px, Y: y})
|
|
}
|
|
|
|
// compare against c.Width and NOT c.Height, because the image is rotated.
|
|
if p.NewWidth > c.Width || (p.NewHeight > 0 && p.NewHeight > c.Width) {
|
|
// Include the currently processed energy seam into the seams table,
|
|
// but only when an image enlargement operation is commenced.
|
|
// We need to take this approach in order to avoid picking the same seam each time.
|
|
energySeams = append(energySeams, seams)
|
|
}
|
|
return seams
|
|
}
|
|
|
|
// RemoveSeam remove the least important columns based on the stored energy (seams) level.
|
|
func (c *Carver) RemoveSeam(img *image.NRGBA, seams []Seam, debug bool) *image.NRGBA {
|
|
bounds := img.Bounds()
|
|
// Reduce the image width with one pixel on each iteration.
|
|
dst := image.NewNRGBA(image.Rect(0, 0, bounds.Dx()-1, bounds.Dy()))
|
|
|
|
for _, seam := range seams {
|
|
y := seam.Y
|
|
for x := 0; x < bounds.Max.X; x++ {
|
|
if seam.X == x {
|
|
if debug {
|
|
c.Seams = append(c.Seams, Seam{X: x, Y: y})
|
|
}
|
|
} else if seam.X < x {
|
|
dst.Set(x-1, y, img.At(x, y))
|
|
} else {
|
|
dst.Set(x, y, img.At(x, y))
|
|
}
|
|
}
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// AddSeam add a new seam.
|
|
func (c *Carver) AddSeam(img *image.NRGBA, seams []Seam, debug bool) *image.NRGBA {
|
|
var (
|
|
lr, lg, lb uint32
|
|
rr, rg, rb uint32
|
|
)
|
|
|
|
bounds := img.Bounds()
|
|
dst := image.NewNRGBA(image.Rect(0, 0, bounds.Dx()+1, bounds.Dy()))
|
|
|
|
for _, seam := range seams {
|
|
y := seam.Y
|
|
for x := 0; x < bounds.Max.X; x++ {
|
|
if seam.X == x {
|
|
if debug {
|
|
c.Seams = append(c.Seams, Seam{X: x, Y: y})
|
|
}
|
|
if x > 0 && x != bounds.Max.X {
|
|
lr, lg, lb, _ = img.At(x-1, y).RGBA()
|
|
} else {
|
|
lr, lg, lb, _ = img.At(x, y).RGBA()
|
|
}
|
|
|
|
if x < bounds.Max.X-1 {
|
|
rr, rg, rb, _ = img.At(x+1, y).RGBA()
|
|
} else if x == bounds.Max.X {
|
|
rr, rg, rb, _ = img.At(x, y).RGBA()
|
|
}
|
|
|
|
// calculate the average color of the neighboring pixels
|
|
avr, avg, avb := (lr+rr)>>1, (lg+rg)>>1, (lb+rb)>>1
|
|
dst.Set(x, y, color.RGBA{uint8(avr >> 8), uint8(avg >> 8), uint8(avb >> 8), 0xff})
|
|
dst.Set(x+1, y, img.At(x, y))
|
|
} else if seam.X < x {
|
|
dst.Set(x, y, img.At(x-1, y))
|
|
dst.Set(x+1, y, img.At(x, y))
|
|
} else {
|
|
dst.Set(x, y, img.At(x, y))
|
|
}
|
|
}
|
|
}
|
|
|
|
return dst
|
|
}
|