package caire import ( "image" "image/color" "image/draw" _ "image/gif" "image/jpeg" _ "image/jpeg" _ "image/png" "io" "github.com/nfnt/resize" "github.com/pkg/errors" _ "golang.org/x/image/bmp" ) // SeamCarver interface defines the Resize method. // This has to be implemented by every struct which declares a Resize method. type SeamCarver interface { Resize(*image.NRGBA) (image.Image, error) } // Processor options type Processor struct { SobelThreshold int BlurRadius int NewWidth int NewHeight int Percentage bool Square bool Debug bool Scale bool FaceDetect bool Classifier string } // Resize implements the Resize method of the Carver interface. // It returns the concrete resize operation method. func Resize(s SeamCarver, img *image.NRGBA) (image.Image, error) { return s.Resize(img) } // Resize method takes the source image and rescales it using the parameters provided. // The new image can be rescaled either horizontally or vertically (or both). // Depending on the provided parameters the image can be either reduced or enlarged. func (p *Processor) Resize(img *image.NRGBA) (image.Image, error) { var c = NewCarver(img.Bounds().Dx(), img.Bounds().Dy()) var newImg image.Image var newWidth, newHeight int var pw, ph int if p.NewWidth > c.Width { newWidth = p.NewWidth - (p.NewWidth - (p.NewWidth - c.Width)) } else { newWidth = c.Width - (c.Width - (c.Width - p.NewWidth)) } if p.NewHeight > c.Height { newHeight = p.NewHeight - (p.NewHeight - (p.NewHeight - c.Height)) } else { newHeight = c.Height - (c.Height - (c.Height - p.NewHeight)) } if p.NewWidth == 0 { newWidth = p.NewWidth } if p.NewHeight == 0 { newHeight = p.NewHeight } reduce := func() { width, height := img.Bounds().Max.X, img.Bounds().Max.Y c = NewCarver(width, height) c.ComputeSeams(img, p) seams := c.FindLowestEnergySeams() img = c.RemoveSeam(img, seams, p.Debug) } enlarge := func() { width, height := img.Bounds().Max.X, img.Bounds().Max.Y c = NewCarver(width, height) c.ComputeSeams(img, p) seams := c.FindLowestEnergySeams() img = c.AddSeam(img, seams, p.Debug) } if p.Percentage || p.Square { // When square option is used the image will be resized to a square based on the shortest edge. pw = c.Width - c.Height ph = c.Height - c.Width if p.Percentage { // Calculate new sizes based on provided percentage. pw = c.Width - int(float64(c.Width)-(float64(p.NewWidth)/100*float64(c.Width))) ph = c.Height - int(float64(c.Height)-(float64(p.NewHeight)/100*float64(c.Height))) if pw > newWidth || ph > newHeight { return nil, errors.New("the generated image size should be less than original image size") } } // Reduce image size horizontally for x := 0; x < pw; x++ { reduce() } // Reduce image size vertically img = c.RotateImage90(img) for y := 0; y < ph; y++ { reduce() } img = c.RotateImage270(img) } else if newWidth > 0 || newHeight > 0 { // Use this option to rescale the image proportionally prior resizing. // First the image is scaled down preserving the image aspect ratio, // then the seam carving algorithm is applied only to the remaining pixels. // Ex. : given an image of dimensions 2048x1536 if we want to resize to the 1024x500, // the tool first rescale the image to 1024x768, then it will remove the remaining 268px. if p.Scale { if p.NewWidth > img.Bounds().Max.X || p.NewHeight > img.Bounds().Max.Y { return nil, errors.New("scale option can not be used on image enlargement") } // Preserve the aspect ratio on horizontal or vertical axes. if p.NewWidth > p.NewHeight { newWidth = 0 newImg = resize.Resize(uint(p.NewWidth), 0, img, resize.Lanczos3) if p.NewHeight < newImg.Bounds().Dy() { newHeight = newImg.Bounds().Dy() - p.NewHeight } else { return nil, errors.New("cannot rescale to this size preserving the image aspect ratio") } } else { newHeight = 0 newImg = resize.Resize(0, uint(p.NewHeight), img, resize.Lanczos3) if p.NewWidth < newImg.Bounds().Dx() { newWidth = newImg.Bounds().Dx() - p.NewWidth } else { return nil, errors.New("cannot rescale to this size preserving the image aspect ratio") } } dst := image.NewNRGBA(image.Rect(0, 0, newImg.Bounds().Max.X, newImg.Bounds().Max.Y)) draw.Draw(dst, image.Rect(0, 0, newImg.Bounds().Dx(), newImg.Bounds().Dy()), newImg, image.ZP, draw.Src) img = dst } if newWidth > 0 { if p.NewWidth > c.Width { for x := 0; x < newWidth; x++ { enlarge() } } else { for x := 0; x < newWidth; x++ { reduce() } } } if newHeight > 0 { img = c.RotateImage90(img) if p.NewHeight > c.Height { for y := 0; y < newHeight; y++ { enlarge() } } else { for y := 0; y < newHeight; y++ { reduce() } } img = c.RotateImage270(img) } } return img, nil } // Process is the main function having as parameters an input reader and an output writer. // We are using the io package, because this way we can provide different types of input and output source, // as long as they implement the io.Reader and io.Writer interface. func (p *Processor) Process(r io.Reader, w io.Writer) error { src, _, err := image.Decode(r) if err != nil { return err } img := imgToNRGBA(src) res, err := Resize(p, img) if err != nil { return err } return jpeg.Encode(w, res, &jpeg.Options{Quality: 100}) } // Converts any image type to *image.NRGBA with min-point at (0, 0). func imgToNRGBA(img image.Image) *image.NRGBA { srcBounds := img.Bounds() if srcBounds.Min.X == 0 && srcBounds.Min.Y == 0 { if src0, ok := img.(*image.NRGBA); ok { return src0 } } srcMinX := srcBounds.Min.X srcMinY := srcBounds.Min.Y dstBounds := srcBounds.Sub(srcBounds.Min) dstW := dstBounds.Dx() dstH := dstBounds.Dy() dst := image.NewNRGBA(dstBounds) switch src := img.(type) { case *image.NRGBA: rowSize := srcBounds.Dx() * 4 for dstY := 0; dstY < dstH; dstY++ { di := dst.PixOffset(0, dstY) si := src.PixOffset(srcMinX, srcMinY+dstY) for dstX := 0; dstX < dstW; dstX++ { copy(dst.Pix[di:di+rowSize], src.Pix[si:si+rowSize]) } } case *image.YCbCr: for dstY := 0; dstY < dstH; dstY++ { di := dst.PixOffset(0, dstY) for dstX := 0; dstX < dstW; dstX++ { srcX := srcMinX + dstX srcY := srcMinY + dstY siy := src.YOffset(srcX, srcY) sic := src.COffset(srcX, srcY) r, g, b := color.YCbCrToRGB(src.Y[siy], src.Cb[sic], src.Cr[sic]) dst.Pix[di+0] = r dst.Pix[di+1] = g dst.Pix[di+2] = b dst.Pix[di+3] = 0xff di += 4 } } default: for dstY := 0; dstY < dstH; dstY++ { di := dst.PixOffset(0, dstY) for dstX := 0; dstX < dstW; dstX++ { c := color.NRGBAModel.Convert(img.At(srcMinX+dstX, srcMinY+dstY)).(color.NRGBA) dst.Pix[di+0] = c.R dst.Pix[di+1] = c.G dst.Pix[di+2] = c.B dst.Pix[di+3] = c.A di += 4 } } } return dst }