/* * Copyright (c) 2015 New Designs Unlimited, LLC * Opensource Automated License Plate Recognition [http://www.openalpr.com] * * This file is part of OpenAlpr. * * OpenAlpr is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License * version 3 as published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ #include #include "utility.h" using namespace cv; using namespace std; namespace alpr { Rect expandRect(Rect original, int expandXPixels, int expandYPixels, int maxX, int maxY) { Rect expandedRegion = Rect(original); float halfX = round((float) expandXPixels / 2.0); float halfY = round((float) expandYPixels / 2.0); expandedRegion.x = expandedRegion.x - halfX; expandedRegion.width = expandedRegion.width + expandXPixels; expandedRegion.y = expandedRegion.y - halfY; expandedRegion.height = expandedRegion.height + expandYPixels; if (expandedRegion.x < 0) expandedRegion.x = 0; if (expandedRegion.y < 0) expandedRegion.y = 0; if (expandedRegion.x + expandedRegion.width > maxX) expandedRegion.width = maxX - expandedRegion.x; if (expandedRegion.y + expandedRegion.height > maxY) expandedRegion.height = maxY - expandedRegion.y; return expandedRegion; } Mat drawImageDashboard(vector images, int imageType, unsigned int numColumns) { unsigned int numRows = ceil((float) images.size() / (float) numColumns); Mat dashboard(Size(images[0].cols * numColumns, images[0].rows * numRows), imageType); for (unsigned int i = 0; i < numColumns * numRows; i++) { if (i < images.size()) images[i].copyTo(dashboard(Rect((i%numColumns) * images[i].cols, floor((float) i/numColumns) * images[i].rows, images[i].cols, images[i].rows))); else { Mat black = Mat::zeros(images[0].size(), imageType); black.copyTo(dashboard(Rect((i%numColumns) * images[0].cols, floor((float) i/numColumns) * images[0].rows, images[0].cols, images[0].rows))); } } return dashboard; } Mat addLabel(Mat input, string label) { const int border_size = 1; const Scalar border_color(0,0,255); const int extraHeight = 20; const Scalar bg(222,222,222); const Scalar fg(0,0,0); Rect destinationRect(border_size, extraHeight, input.cols, input.rows); Mat newImage(Size(input.cols + (border_size), input.rows + extraHeight + (border_size )), input.type()); input.copyTo(newImage(destinationRect)); cout << " Adding label " << label << endl; if (input.type() == CV_8U) cvtColor(newImage, newImage, CV_GRAY2BGR); rectangle(newImage, Point(0,0), Point(input.cols, extraHeight), bg, CV_FILLED); putText(newImage, label, Point(5, extraHeight - 5), CV_FONT_HERSHEY_PLAIN , 0.7, fg); rectangle(newImage, Point(0,0), Point(newImage.cols - 1, newImage.rows -1), border_color, border_size); return newImage; } void drawAndWait(cv::Mat* frame) { cv::imshow("Temp Window", *frame); while (cv::waitKey(50) == -1) { // loop } cv::destroyWindow("Temp Window"); } void displayImage(Config* config, string windowName, cv::Mat frame) { if (config->debugShowImages) { imshow(windowName, frame); cv::waitKey(5); } } vector produceThresholds(const Mat img_gray, Config* config) { const int THRESHOLD_COUNT = 3; //Mat img_equalized = equalizeBrightness(img_gray); timespec startTime; getTimeMonotonic(&startTime); vector thresholds; for (int i = 0; i < THRESHOLD_COUNT; i++) thresholds.push_back(Mat(img_gray.size(), CV_8U)); int i = 0; // Adaptive //adaptiveThreshold(img_gray, thresholds[i++], 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY_INV , 7, 3); //adaptiveThreshold(img_gray, thresholds[i++], 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY_INV , 13, 3); //adaptiveThreshold(img_gray, thresholds[i++], 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY_INV , 17, 3); // Wolf int k = 0, win=18; //NiblackSauvolaWolfJolion (img_gray, thresholds[i++], WOLFJOLION, win, win, 0.05 + (k * 0.35)); //bitwise_not(thresholds[i-1], thresholds[i-1]); NiblackSauvolaWolfJolion (img_gray, thresholds[i++], WOLFJOLION, win, win, 0.05 + (k * 0.35)); bitwise_not(thresholds[i-1], thresholds[i-1]); k = 1; win = 22; NiblackSauvolaWolfJolion (img_gray, thresholds[i++], WOLFJOLION, win, win, 0.05 + (k * 0.35)); bitwise_not(thresholds[i-1], thresholds[i-1]); //NiblackSauvolaWolfJolion (img_gray, thresholds[i++], WOLFJOLION, win, win, 0.05 + (k * 0.35)); //bitwise_not(thresholds[i-1], thresholds[i-1]); // Sauvola k = 1; NiblackSauvolaWolfJolion (img_gray, thresholds[i++], SAUVOLA, 12, 12, 0.18 * k); bitwise_not(thresholds[i-1], thresholds[i-1]); //k=2; //NiblackSauvolaWolfJolion (img_gray, thresholds[i++], SAUVOLA, 12, 12, 0.18 * k); //bitwise_not(thresholds[i-1], thresholds[i-1]); if (config->debugTiming) { timespec endTime; getTimeMonotonic(&endTime); cout << " -- Produce Threshold Time: " << diffclock(startTime, endTime) << "ms." << endl; } return thresholds; //threshold(img_equalized, img_threshold, 100, 255, THRESH_BINARY); } double median(int array[], int arraySize) { if (arraySize == 0) { //std::cerr << "Median calculation requested on empty array" << endl; return 0; } std::sort(&array[0], &array[arraySize]); return arraySize % 2 ? array[arraySize / 2] : (array[arraySize / 2 - 1] + array[arraySize / 2]) / 2; } Mat equalizeBrightness(Mat img) { // Divide the image by its morphologically closed counterpart Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(19,19)); Mat closed; morphologyEx(img, closed, MORPH_CLOSE, kernel); img.convertTo(img, CV_32FC1); // divide requires floating-point divide(img, closed, img, 1, CV_32FC1); normalize(img, img, 0, 255, NORM_MINMAX); img.convertTo(img, CV_8U); // convert back to unsigned int return img; } void drawRotatedRect(Mat* img, RotatedRect rect, Scalar color, int thickness) { Point2f rect_points[4]; rect.points( rect_points ); for( int j = 0; j < 4; j++ ) line( *img, rect_points[j], rect_points[(j+1)%4], color, thickness, 8 ); } void fillMask(Mat img, const Mat mask, Scalar color) { for (int row = 0; row < img.rows; row++) { for (int col = 0; col < img.cols; col++) { int m = (int) mask.at(row, col); if (m) { for (int z = 0; z < 3; z++) { int prevVal = img.at(row, col)[z]; img.at(row, col)[z] = ((int) color[z]) | prevVal; } } } } } void drawX(Mat img, Rect rect, Scalar color, int thickness) { Point tl(rect.x, rect.y); Point tr(rect.x + rect.width, rect.y); Point bl(rect.x, rect.y + rect.height); Point br(rect.x + rect.width, rect.y + rect.height); line(img, tl, br, color, thickness); line(img, bl, tr, color, thickness); } double distanceBetweenPoints(Point p1, Point p2) { float asquared = (p2.x - p1.x)*(p2.x - p1.x); float bsquared = (p2.y - p1.y)*(p2.y - p1.y); return sqrt(asquared + bsquared); } float angleBetweenPoints(Point p1, Point p2) { int deltaY = p2.y - p1.y; int deltaX = p2.x - p1.x; return atan2((float) deltaY, (float) deltaX) * (180 / CV_PI); } Size getSizeMaintainingAspect(Mat inputImg, int maxWidth, int maxHeight) { float aspect = ((float) inputImg.cols) / ((float) inputImg.rows); if (maxWidth / aspect > maxHeight) { return Size(maxHeight * aspect, maxHeight); } else { return Size(maxWidth, maxWidth / aspect); } } // Compares two strings and computes the edit distance between them // http://en.wikipedia.org/wiki/Levenshtein_distance // max is the cutoff (i.e., max distance) where we stop trying to find distance int levenshteinDistance (const std::string &s1, const std::string &s2, int max) { const char* word1 = s1.c_str(); int len1 = s1.length(); const char* word2 = s2.c_str(); int len2 = s2.length(); max--; //int matrix[2][len2 + 1]; std::vector > matrix; for (unsigned int i = 0; i < 2; i++) { std::vector top_elem; matrix.push_back(top_elem); for (unsigned int j = 0; j < len2 + 1; j++) matrix[i].push_back(0); } int i; int j; /* Initialize the 0 row of "matrix". 0 1 2 3 */ for (j = 0; j <= len2; j++) { matrix[0][j] = j; } /* Loop over column. */ for (i = 1; i <= len1; i++) { char c1; /* The first value to consider of the ith column. */ int min_j; /* The last value to consider of the ith column. */ int max_j; /* The smallest value of the matrix in the ith column. */ int col_min; /* The next column of the matrix to fill in. */ int next; /* The previously-filled-in column of the matrix. */ int prev; c1 = word1[i-1]; min_j = 1; if (i > max) { min_j = i - max; } max_j = len2; if (len2 > max + i) { max_j = max + i; } col_min = INT_MAX; next = i % 2; if (next == 1) { prev = 0; } else { prev = 1; } matrix[next][0] = i; /* Loop over rows. */ for (j = 1; j <= len2; j++) { if (j < min_j || j > max_j) { /* Put a large value in there. */ matrix[next][j] = max + 1; } else { char c2; c2 = word2[j-1]; if (c1 == c2) { /* The character at position i in word1 is the same as the character at position j in word2. */ matrix[next][j] = matrix[prev][j-1]; } else { /* The character at position i in word1 is not the same as the character at position j in word2, so work out what the minimum cost for getting to cell i, j is. */ int del; int insert; int substitute; int minimum; del = matrix[prev][j] + 1; insert = matrix[next][j-1] + 1; substitute = matrix[prev][j-1] + 1; minimum = del; if (insert < minimum) { minimum = insert; } if (substitute < minimum) { minimum = substitute; } matrix[next][j] = minimum; } } /* Find the minimum value in the ith column. */ if (matrix[next][j] < col_min) { col_min = matrix[next][j]; } } if (col_min > max) { /* All the elements of the ith column are greater than the maximum, so no match less than or equal to max can be found by looking at succeeding columns. */ return max + 1; } } int returnval = matrix[len1 % 2][len2]; if (returnval > max + 1) returnval = max + 1; return returnval; } LineSegment::LineSegment() { init(0, 0, 0, 0); } LineSegment::LineSegment(Point p1, Point p2) { init(p1.x, p1.y, p2.x, p2.y); } LineSegment::LineSegment(int x1, int y1, int x2, int y2) { init(x1, y1, x2, y2); } void LineSegment::init(int x1, int y1, int x2, int y2) { this->p1 = Point(x1, y1); this->p2 = Point(x2, y2); if (p2.x - p1.x == 0) this->slope = 0.00000000001; else this->slope = (float) (p2.y - p1.y) / (float) (p2.x - p1.x); this->length = distanceBetweenPoints(p1, p2); this->angle = angleBetweenPoints(p1, p2); } bool LineSegment::isPointBelowLine( Point tp ) { return ((p2.x - p1.x)*(tp.y - p1.y) - (p2.y - p1.y)*(tp.x - p1.x)) > 0; } float LineSegment::getPointAt(float x) { return slope * (x - p2.x) + p2.y; } Point LineSegment::closestPointOnSegmentTo(Point p) { float top = (p.x - p1.x) * (p2.x - p1.x) + (p.y - p1.y)*(p2.y - p1.y); float bottom = distanceBetweenPoints(p2, p1); bottom = bottom * bottom; float u = top / bottom; float x = p1.x + u * (p2.x - p1.x); float y = p1.y + u * (p2.y - p1.y); return Point(x, y); } Point LineSegment::intersection(LineSegment line) { float c1, c2; float intersection_X = -1, intersection_Y= -1; c1 = p1.y - slope * p1.x; // which is same as y2 - slope * x2 c2 = line.p2.y - line.slope * line.p2.x; // which is same as y2 - slope * x2 if( (slope - line.slope) == 0) { //std::cout << "No Intersection between the lines" << endl; } else if (p1.x == p2.x) { // Line1 is vertical return Point(p1.x, line.getPointAt(p1.x)); } else if (line.p1.x == line.p2.x) { // Line2 is vertical return Point(line.p1.x, getPointAt(line.p1.x)); } else { intersection_X = (c2 - c1) / (slope - line.slope); intersection_Y = slope * intersection_X + c1; } return Point(intersection_X, intersection_Y); } Point LineSegment::midpoint() { // Handle the case where the line is vertical if (p1.x == p2.x) { float ydiff = p2.y-p1.y; float y = p1.y + (ydiff/2); return Point(p1.x, y); } float diff = p2.x - p1.x; float midX = ((float) p1.x) + (diff / 2); int midY = getPointAt(midX); return Point(midX, midY); } LineSegment LineSegment::getParallelLine(float distance) { float diff_x = p2.x - p1.x; float diff_y = p2.y - p1.y; float angle = atan2( diff_x, diff_y); float dist_x = distance * cos(angle); float dist_y = -distance * sin(angle); int offsetX = (int)round(dist_x); int offsetY = (int)round(dist_y); LineSegment result(p1.x + offsetX, p1.y + offsetY, p2.x + offsetX, p2.y + offsetY); return result; } // Given a contour and a mask, this function determines what percentage of the contour (area) // is inside the masked area. float getContourAreaPercentInsideMask(cv::Mat mask, std::vector > contours, std::vector hierarchy, int contourIndex) { Mat innerArea = Mat::zeros(mask.size(), CV_8U); drawContours(innerArea, contours, contourIndex, // draw this contour cv::Scalar(255,255,255), // in CV_FILLED, 8, hierarchy, 2 ); int startingPixels = cv::countNonZero(innerArea); //drawAndWait(&innerArea); bitwise_and(innerArea, mask, innerArea); int endingPixels = cv::countNonZero(innerArea); //drawAndWait(&innerArea); return ((float) endingPixels) / ((float) startingPixels); } std::string toString(int value) { stringstream ss; ss << value; return ss.str(); } std::string toString(long value) { stringstream ss; ss << value; return ss.str(); } std::string toString(unsigned int value) { return toString((int) value); } std::string toString(float value) { stringstream ss; ss << value; return ss.str(); } std::string toString(double value) { stringstream ss; ss << value; return ss.str(); } }