/* * Copyright (c) 2013 OpenALPR Technology, Inc. * Open source Automated License Plate Recognition [http://www.openalpr.com] * * This file is part of OpenALPR. * * OpenALPR is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License * version 3 as published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ #include "detectorcuda.h" #ifdef COMPILE_GPU using namespace cv; using namespace std; namespace alpr { DetectorCUDA::DetectorCUDA(Config* config) : Detector(config) { if( this->cuda_cascade.load( get_detector_file() ) ) { this->loaded = true; printf("--(!)Loaded CUDA classifier\n"); } else { this->loaded = false; printf("--(!)Error loading CPU classifier %s\n", get_detector_file().c_str()); } } DetectorCUDA::~DetectorCUDA() { } vector DetectorCUDA::detect(Mat frame, std::vector regionsOfInterest) { Mat frame_gray; if (frame.channels() > 2) { cvtColor( frame, frame_gray, CV_BGR2GRAY ); } else { frame.copyTo(frame_gray); } vector detectedRegions; for (int i = 0; i < regionsOfInterest.size(); i++) { Mat cropped = frame_gray(regionsOfInterest[i]); vector subRegions = doCascade(cropped, regionsOfInterest[i].x, regionsOfInterest[i].y); for (int j = 0; j < subRegions.size(); j++) detectedRegions.push_back(subRegions[j]); } return detectedRegions; } vector DetectorCUDA::doCascade(Mat frame, int offset_x, int offset_y) { int w = frame.size().width; int h = frame.size().height; float scale_factor = computeScaleFactor(w, h); vector plates; equalizeHist( frame, frame ); if (scale_factor != 1.0) resize(frame, frame, Size(w * scale_factor, h * scale_factor)); //-- Detect plates timespec startTime; getTimeMonotonic(&startTime); float maxWidth = ((float) w) * (config->maxPlateWidthPercent / 100.0f) * scale_factor; float maxHeight = ((float) h) * (config->maxPlateHeightPercent / 100.0f) * scale_factor; Size minSize(config->minPlateSizeWidthPx * scale_factor, config->minPlateSizeHeightPx * scale_factor); gpu::GpuMat cudaFrame, plateregions_buffer; Mat plateregions_downloaded; cudaFrame.upload(frame); int numdetected = cuda_cascade.detectMultiScale(cudaFrame, plateregions_buffer, (double) config->detection_iteration_increase, config->detectionStrictness, minSize); plateregions_buffer.colRange(0, numdetected).download(plateregions_downloaded); for (int i = 0; i < numdetected; ++i) { plates.push_back(plateregions_downloaded.ptr()[i]); } if (config->debugTiming) { timespec endTime; getTimeMonotonic(&endTime); cout << "LBP Time: " << diffclock(startTime, endTime) << "ms." << endl; } for( unsigned int i = 0; i < plates.size(); i++ ) { plates[i].x = (plates[i].x / scale_factor); plates[i].y = (plates[i].y / scale_factor); plates[i].width = plates[i].width / scale_factor; plates[i].height = plates[i].height / scale_factor; // Ensure that the rectangle isn't < 0 or > maxWidth/Height plates[i] = expandRect(plates[i], 0, 0, w, h); plates[i].x = plates[i].x + offset_x; plates[i].y = plates[i].y + offset_y; } vector orderedRegions = aggregateRegions(plates); return orderedRegions; } } #endif