mirror of
https://github.com/kerberos-io/openalpr-base.git
synced 2025-10-06 06:46:53 +08:00
Replaced "uint" (platform specific) with "unsigned int" (universal)
This commit is contained in:
@@ -69,7 +69,7 @@ namespace alpr
|
||||
// cvtColor(img_contours, img_contours, CV_GRAY2RGB);
|
||||
//
|
||||
// vector<vector<Point> > allowedContours;
|
||||
// for (uint i = 0; i < charAnalysis->bestContours.size(); i++)
|
||||
// for (unsigned int i = 0; i < charAnalysis->bestContours.size(); i++)
|
||||
// {
|
||||
// if (charAnalysis->bestContours.goodIndices[i])
|
||||
// allowedContours.push_back(charAnalysis->bestContours.contours[i]);
|
||||
@@ -96,7 +96,7 @@ namespace alpr
|
||||
|
||||
|
||||
|
||||
for (uint lineidx = 0; lineidx < pipeline_data->textLines.size(); lineidx++)
|
||||
for (unsigned int lineidx = 0; lineidx < pipeline_data->textLines.size(); lineidx++)
|
||||
{
|
||||
this->top = pipeline_data->textLines[lineidx].topLine;
|
||||
this->bottom = pipeline_data->textLines[lineidx].bottomLine;
|
||||
@@ -115,7 +115,7 @@ namespace alpr
|
||||
vector<Mat> allHistograms;
|
||||
|
||||
vector<Rect> lineBoxes;
|
||||
for (uint i = 0; i < pipeline_data->thresholds.size(); i++)
|
||||
for (unsigned int i = 0; i < pipeline_data->thresholds.size(); i++)
|
||||
{
|
||||
Mat histogramMask = Mat::zeros(pipeline_data->thresholds[i].size(), CV_8U);
|
||||
|
||||
@@ -139,7 +139,7 @@ namespace alpr
|
||||
|
||||
if (this->config->debugCharSegmenter)
|
||||
{
|
||||
for (uint cboxIdx = 0; cboxIdx < charBoxes.size(); cboxIdx++)
|
||||
for (unsigned int cboxIdx = 0; cboxIdx < charBoxes.size(); cboxIdx++)
|
||||
{
|
||||
rectangle(allHistograms[i], charBoxes[cboxIdx], Scalar(0, 255, 0));
|
||||
}
|
||||
@@ -148,7 +148,7 @@ namespace alpr
|
||||
displayImage(config, "Char seg histograms", histDashboard);
|
||||
}
|
||||
|
||||
for (uint z = 0; z < charBoxes.size(); z++)
|
||||
for (unsigned int z = 0; z < charBoxes.size(); z++)
|
||||
lineBoxes.push_back(charBoxes[z]);
|
||||
//drawAndWait(&histogramMask);
|
||||
}
|
||||
@@ -156,7 +156,7 @@ namespace alpr
|
||||
float medianCharWidth = avgCharWidth;
|
||||
vector<int> widthValues;
|
||||
// Compute largest char width
|
||||
for (uint i = 0; i < lineBoxes.size(); i++)
|
||||
for (unsigned int i = 0; i < lineBoxes.size(); i++)
|
||||
{
|
||||
widthValues.push_back(lineBoxes[i].width);
|
||||
}
|
||||
@@ -175,7 +175,7 @@ namespace alpr
|
||||
if (this->config->debugCharSegmenter)
|
||||
{
|
||||
// Setup the dashboard images to show the cleaning filters
|
||||
for (uint i = 0; i < pipeline_data->thresholds.size(); i++)
|
||||
for (unsigned int i = 0; i < pipeline_data->thresholds.size(); i++)
|
||||
{
|
||||
Mat cleanImg = Mat::zeros(pipeline_data->thresholds[i].size(), pipeline_data->thresholds[i].type());
|
||||
Mat boxMask = getCharBoxMask(pipeline_data->thresholds[i], candidateBoxes);
|
||||
@@ -183,7 +183,7 @@ namespace alpr
|
||||
bitwise_and(cleanImg, boxMask, cleanImg);
|
||||
cvtColor(cleanImg, cleanImg, CV_GRAY2BGR);
|
||||
|
||||
for (uint c = 0; c < candidateBoxes.size(); c++)
|
||||
for (unsigned int c = 0; c < candidateBoxes.size(); c++)
|
||||
rectangle(cleanImg, candidateBoxes[c], Scalar(0, 255, 0), 1);
|
||||
imgDbgCleanStages.push_back(cleanImg);
|
||||
}
|
||||
@@ -198,7 +198,7 @@ namespace alpr
|
||||
|
||||
candidateBoxes = filterMostlyEmptyBoxes(pipeline_data->thresholds, candidateBoxes);
|
||||
|
||||
for (uint cbox = 0; cbox < candidateBoxes.size(); cbox++)
|
||||
for (unsigned int cbox = 0; cbox < candidateBoxes.size(); cbox++)
|
||||
pipeline_data->charRegions.push_back(candidateBoxes[cbox]);
|
||||
|
||||
if (config->debugTiming)
|
||||
@@ -251,7 +251,7 @@ namespace alpr
|
||||
vector<Rect> charBoxes;
|
||||
vector<Rect> allBoxes = get1DHits(histogram.histoImg, pxLeniency);
|
||||
|
||||
for (uint i = 0; i < allBoxes.size(); i++)
|
||||
for (unsigned int i = 0; i < allBoxes.size(); i++)
|
||||
{
|
||||
if (allBoxes[i].width >= config->segmentationMinBoxWidthPx && allBoxes[i].width <= MAX_SEGMENT_WIDTH &&
|
||||
allBoxes[i].height > MIN_HISTOGRAM_HEIGHT )
|
||||
@@ -307,7 +307,7 @@ namespace alpr
|
||||
{
|
||||
columnCount = 0;
|
||||
|
||||
for (uint i = 0; i < charBoxes.size(); i++)
|
||||
for (unsigned int i = 0; i < charBoxes.size(); i++)
|
||||
{
|
||||
if (col >= charBoxes[i].x && col < (charBoxes[i].x + charBoxes[i].width))
|
||||
columnCount++;
|
||||
@@ -339,7 +339,7 @@ namespace alpr
|
||||
|
||||
float rowScore = 0;
|
||||
|
||||
for (uint boxidx = 0; boxidx < allBoxes.size(); boxidx++)
|
||||
for (unsigned int boxidx = 0; boxidx < allBoxes.size(); boxidx++)
|
||||
{
|
||||
int w = allBoxes[boxidx].width;
|
||||
if (w >= config->segmentationMinBoxWidthPx && w <= MAX_SEGMENT_WIDTH)
|
||||
@@ -398,7 +398,7 @@ namespace alpr
|
||||
Mat imgBestBoxes(img.size(), img.type());
|
||||
img.copyTo(imgBestBoxes);
|
||||
cvtColor(imgBestBoxes, imgBestBoxes, CV_GRAY2BGR);
|
||||
for (uint i = 0; i < bestBoxes.size(); i++)
|
||||
for (unsigned int i = 0; i < bestBoxes.size(); i++)
|
||||
rectangle(imgBestBoxes, bestBoxes[i], Scalar(0, 255, 0));
|
||||
|
||||
this->imgDbgGeneral.push_back(addLabel(histoImg, "All Histograms"));
|
||||
@@ -447,7 +447,7 @@ namespace alpr
|
||||
Mat textLineMask = Mat::zeros(thresholds[0].size(), CV_8U);
|
||||
fillConvexPoly(textLineMask, textLine.linePolygon.data(), textLine.linePolygon.size(), Scalar(255,255,255));
|
||||
|
||||
for (uint i = 0; i < thresholds.size(); i++)
|
||||
for (unsigned int i = 0; i < thresholds.size(); i++)
|
||||
{
|
||||
vector<vector<Point> > contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
@@ -456,7 +456,7 @@ namespace alpr
|
||||
thresholds[i].copyTo(thresholdsCopy, textLineMask);
|
||||
findContours(thresholdsCopy, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE);
|
||||
|
||||
for (uint c = 0; c < contours.size(); c++)
|
||||
for (unsigned int c = 0; c < contours.size(); c++)
|
||||
{
|
||||
if (contours[c].size() == 0)
|
||||
continue;
|
||||
@@ -476,7 +476,7 @@ namespace alpr
|
||||
{
|
||||
vector<Rect> newCharBoxes;
|
||||
|
||||
for (uint i = 0; i < charBoxes.size(); i++)
|
||||
for (unsigned int i = 0; i < charBoxes.size(); i++)
|
||||
{
|
||||
if (i == charBoxes.size() - 1)
|
||||
{
|
||||
@@ -496,7 +496,7 @@ namespace alpr
|
||||
newCharBoxes.push_back(bigRect);
|
||||
if (this->config->debugCharSegmenter)
|
||||
{
|
||||
for (uint z = 0; z < pipeline_data->thresholds.size(); z++)
|
||||
for (unsigned int z = 0; z < pipeline_data->thresholds.size(); z++)
|
||||
{
|
||||
Point center(bigRect.x + bigRect.width / 2, bigRect.y + bigRect.height / 2);
|
||||
RotatedRect rrect(center, Size2f(bigRect.width, bigRect.height + (bigRect.height / 2)), 0);
|
||||
@@ -525,7 +525,7 @@ namespace alpr
|
||||
|
||||
Mat mask = getCharBoxMask(thresholds[0], charRegions);
|
||||
|
||||
for (uint i = 0; i < thresholds.size(); i++)
|
||||
for (unsigned int i = 0; i < thresholds.size(); i++)
|
||||
{
|
||||
bitwise_and(thresholds[i], mask, thresholds[i]);
|
||||
vector<vector<Point> > contours;
|
||||
@@ -542,14 +542,14 @@ namespace alpr
|
||||
|
||||
findContours(tempImg, contours, RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
|
||||
|
||||
for (uint j = 0; j < charRegions.size(); j++)
|
||||
for (unsigned int j = 0; j < charRegions.size(); j++)
|
||||
{
|
||||
const float MIN_SPECKLE_HEIGHT = ((float)charRegions[j].height) * MIN_SPECKLE_HEIGHT_PERCENT;
|
||||
const float MIN_CONTOUR_AREA = ((float)charRegions[j].area()) * MIN_CONTOUR_AREA_PERCENT;
|
||||
|
||||
int tallestContourHeight = 0;
|
||||
float totalArea = 0;
|
||||
for (uint c = 0; c < contours.size(); c++)
|
||||
for (unsigned int c = 0; c < contours.size(); c++)
|
||||
{
|
||||
if (contours[c].size() == 0)
|
||||
continue;
|
||||
@@ -621,7 +621,7 @@ namespace alpr
|
||||
morphologyEx(thresholds[i], thresholds[i], MORPH_CLOSE, closureElement);
|
||||
|
||||
// Lastly, draw a clipping line between each character boxes
|
||||
for (uint j = 0; j < charRegions.size(); j++)
|
||||
for (unsigned int j = 0; j < charRegions.size(); j++)
|
||||
{
|
||||
line(thresholds[i], Point(charRegions[j].x - 1, charRegions[j].y), Point(charRegions[j].x - 1, charRegions[j].y + charRegions[j].height), Scalar(0, 0, 0));
|
||||
line(thresholds[i], Point(charRegions[j].x + charRegions[j].width + 1, charRegions[j].y), Point(charRegions[j].x + charRegions[j].width + 1, charRegions[j].y + charRegions[j].height), Scalar(0, 0, 0));
|
||||
@@ -635,9 +635,9 @@ namespace alpr
|
||||
// Consider it a bad news bear. REmove the whole area.
|
||||
const float MIN_PERCENT_CHUNK_REMOVED = 0.6;
|
||||
|
||||
for (uint i = 0; i < thresholds.size(); i++)
|
||||
for (unsigned int i = 0; i < thresholds.size(); i++)
|
||||
{
|
||||
for (uint j = 0; j < charRegions.size(); j++)
|
||||
for (unsigned int j = 0; j < charRegions.size(); j++)
|
||||
{
|
||||
Mat boxChar = Mat::zeros(thresholds[i].size(), CV_8U);
|
||||
rectangle(boxChar, charRegions[j], Scalar(255,255,255), CV_FILLED);
|
||||
@@ -685,12 +685,12 @@ namespace alpr
|
||||
{
|
||||
float MAX_FILLED = 0.95 * 255;
|
||||
|
||||
for (uint i = 0; i < charRegions.size(); i++)
|
||||
for (unsigned int i = 0; i < charRegions.size(); i++)
|
||||
{
|
||||
Mat mask = Mat::zeros(thresholds[0].size(), CV_8U);
|
||||
rectangle(mask, charRegions[i], Scalar(255,255,255), -1);
|
||||
|
||||
for (uint j = 0; j < thresholds.size(); j++)
|
||||
for (unsigned int j = 0; j < thresholds.size(); j++)
|
||||
{
|
||||
if (mean(thresholds[j], mask)[0] > MAX_FILLED)
|
||||
{
|
||||
@@ -719,12 +719,12 @@ namespace alpr
|
||||
|
||||
vector<int> boxScores(charRegions.size());
|
||||
|
||||
for (uint i = 0; i < charRegions.size(); i++)
|
||||
for (unsigned int i = 0; i < charRegions.size(); i++)
|
||||
boxScores[i] = 0;
|
||||
|
||||
for (uint i = 0; i < thresholds.size(); i++)
|
||||
for (unsigned int i = 0; i < thresholds.size(); i++)
|
||||
{
|
||||
for (uint j = 0; j < charRegions.size(); j++)
|
||||
for (unsigned int j = 0; j < charRegions.size(); j++)
|
||||
{
|
||||
//float minArea = charRegions[j].area() * MIN_AREA_PERCENT;
|
||||
|
||||
@@ -736,12 +736,12 @@ namespace alpr
|
||||
findContours(tempImg, contours, RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
|
||||
|
||||
vector<Point> allPointsInBox;
|
||||
for (uint c = 0; c < contours.size(); c++)
|
||||
for (unsigned int c = 0; c < contours.size(); c++)
|
||||
{
|
||||
if (contours[c].size() == 0)
|
||||
continue;
|
||||
|
||||
for (uint z = 0; z < contours[c].size(); z++)
|
||||
for (unsigned int z = 0; z < contours[c].size(); z++)
|
||||
allPointsInBox.push_back(contours[c][z]);
|
||||
}
|
||||
|
||||
@@ -765,7 +765,7 @@ namespace alpr
|
||||
vector<Rect> newCharRegions;
|
||||
|
||||
int maxBoxScore = 0;
|
||||
for (uint i = 0; i < charRegions.size(); i++)
|
||||
for (unsigned int i = 0; i < charRegions.size(); i++)
|
||||
{
|
||||
if (boxScores[i] > maxBoxScore)
|
||||
maxBoxScore = boxScores[i];
|
||||
@@ -775,7 +775,7 @@ namespace alpr
|
||||
int MIN_FULL_BOXES = maxBoxScore * 0.49;
|
||||
|
||||
// Now check each score. If it's below the minimum, remove the charRegion
|
||||
for (uint i = 0; i < charRegions.size(); i++)
|
||||
for (unsigned int i = 0; i < charRegions.size(); i++)
|
||||
{
|
||||
if (boxScores[i] > MIN_FULL_BOXES)
|
||||
newCharRegions.push_back(charRegions[i]);
|
||||
@@ -788,7 +788,7 @@ namespace alpr
|
||||
cout << " this box had a score of : " << boxScores[i];;
|
||||
cout << " MIN_FULL_BOXES: " << MIN_FULL_BOXES << endl;;
|
||||
|
||||
for (uint z = 0; z < thresholds.size(); z++)
|
||||
for (unsigned int z = 0; z < thresholds.size(); z++)
|
||||
{
|
||||
rectangle(thresholds[z], charRegions[i], Scalar(0,0,0), -1);
|
||||
|
||||
@@ -838,7 +838,7 @@ namespace alpr
|
||||
vector<int> leftEdges;
|
||||
vector<int> rightEdges;
|
||||
|
||||
for (uint i = 0; i < thresholds.size(); i++)
|
||||
for (unsigned int i = 0; i < thresholds.size(); i++)
|
||||
{
|
||||
Mat rotated;
|
||||
|
||||
@@ -944,7 +944,7 @@ namespace alpr
|
||||
cout << "Edge Filter: Entire right region is erased" << endl;
|
||||
}
|
||||
|
||||
for (uint i = 0; i < thresholds.size(); i++)
|
||||
for (unsigned int i = 0; i < thresholds.size(); i++)
|
||||
{
|
||||
bitwise_and(thresholds[i], mask, thresholds[i]);
|
||||
}
|
||||
@@ -957,7 +957,7 @@ namespace alpr
|
||||
|
||||
Mat invertedMask(mask.size(), mask.type());
|
||||
bitwise_not(mask, invertedMask);
|
||||
for (uint z = 0; z < imgDbgCleanStages.size(); z++)
|
||||
for (unsigned int z = 0; z < imgDbgCleanStages.size(); z++)
|
||||
fillMask(imgDbgCleanStages[z], invertedMask, Scalar(0,0,255));
|
||||
}
|
||||
}
|
||||
@@ -1028,7 +1028,7 @@ namespace alpr
|
||||
Mat boxMask = Mat::zeros(threshold.size(), CV_8U);
|
||||
rectangle(boxMask, slightlySmallerBox, Scalar(255, 255, 255), -1);
|
||||
|
||||
for (uint i = 0; i < contours.size(); i++)
|
||||
for (unsigned int i = 0; i < contours.size(); i++)
|
||||
{
|
||||
// Only bother with the big boxes
|
||||
if (boundingRect(contours[i]).height < MIN_EDGE_CONTOUR_HEIGHT)
|
||||
@@ -1044,7 +1044,7 @@ namespace alpr
|
||||
int tallestContourHeight = 0;
|
||||
int tallestContourWidth = 0;
|
||||
float tallestContourArea = 0;
|
||||
for (uint s = 0; s < subContours.size(); s++)
|
||||
for (unsigned int s = 0; s < subContours.size(); s++)
|
||||
{
|
||||
Rect r = boundingRect(subContours[s]);
|
||||
if (r.height > tallestContourHeight)
|
||||
@@ -1075,7 +1075,7 @@ namespace alpr
|
||||
Mat CharacterSegmenter::getCharBoxMask(Mat img_threshold, vector<Rect> charBoxes)
|
||||
{
|
||||
Mat mask = Mat::zeros(img_threshold.size(), CV_8U);
|
||||
for (uint i = 0; i < charBoxes.size(); i++)
|
||||
for (unsigned int i = 0; i < charBoxes.size(); i++)
|
||||
rectangle(mask, charBoxes[i], Scalar(255, 255, 255), -1);
|
||||
|
||||
return mask;
|
||||
|
Reference in New Issue
Block a user