mirror of
https://github.com/kerberos-io/openalpr-base.git
synced 2025-10-07 07:20:50 +08:00
Rearranged threshold data to be contained in pipeline_data
This commit is contained in:
@@ -130,7 +130,7 @@ int main( int argc, const char** argv )
|
||||
}
|
||||
|
||||
CharacterSegmenter charSegmenter(&pipeline_data);
|
||||
ocr->performOCR(charSegmenter.getThresholds(), charSegmenter.characters);
|
||||
ocr->performOCR(&pipeline_data);
|
||||
ocr->postProcessor->analyze(statecode, 25);
|
||||
|
||||
cout << files[i] << "," << statecode << "," << ocr->postProcessor->bestChars << endl;
|
||||
@@ -237,7 +237,7 @@ int main( int argc, const char** argv )
|
||||
lpAnalysisPositiveTimes.push_back(analysisTime);
|
||||
|
||||
getTime(&startTime);
|
||||
ocr.performOCR(lp.charSegmenter->getThresholds(), lp.charSegmenter->characters);
|
||||
ocr.performOCR(&pipeline_data);
|
||||
getTime(&endTime);
|
||||
double ocrTime = diffclock(startTime, endTime);
|
||||
cout << "\tRegion " << z << ": OCR time: " << ocrTime << "ms." << endl;
|
||||
|
@@ -151,12 +151,12 @@ int main( int argc, const char** argv )
|
||||
|
||||
//ocr.cleanCharRegions(charSegmenter.thresholds, charSegmenter.characters);
|
||||
|
||||
ocr.performOCR(charSegmenter.getThresholds(), charSegmenter.characters);
|
||||
ocr.performOCR(&pipeline_data);
|
||||
ocr.postProcessor->analyze(statecodestr, 25);
|
||||
cout << "OCR results: " << ocr.postProcessor->bestChars << endl;
|
||||
|
||||
vector<bool> selectedBoxes(charSegmenter.getThresholds().size());
|
||||
for (int z = 0; z < charSegmenter.getThresholds().size(); z++)
|
||||
vector<bool> selectedBoxes(pipeline_data.thresholds.size());
|
||||
for (int z = 0; z < pipeline_data.thresholds.size(); z++)
|
||||
selectedBoxes[z] = false;
|
||||
|
||||
int curDashboardSelection = 0;
|
||||
@@ -166,7 +166,7 @@ int main( int argc, const char** argv )
|
||||
for (int z = 0; z < charSegmenter.characters.size(); z++)
|
||||
humanInputs[z] = ' ';
|
||||
|
||||
showDashboard(charSegmenter.getThresholds(), selectedBoxes, 0);
|
||||
showDashboard(pipeline_data.thresholds, selectedBoxes, 0);
|
||||
|
||||
char waitkey = (char) waitKey(50);
|
||||
|
||||
@@ -176,50 +176,50 @@ int main( int argc, const char** argv )
|
||||
{
|
||||
if (curDashboardSelection > 0)
|
||||
curDashboardSelection--;
|
||||
showDashboard(charSegmenter.getThresholds(), selectedBoxes, curDashboardSelection);
|
||||
showDashboard(pipeline_data.thresholds, selectedBoxes, curDashboardSelection);
|
||||
}
|
||||
else if (waitkey == RIGHT_ARROW_KEY) // right arrow key
|
||||
{
|
||||
if (curDashboardSelection < charSegmenter.getThresholds().size() - 1)
|
||||
if (curDashboardSelection < pipeline_data.thresholds.size() - 1)
|
||||
curDashboardSelection++;
|
||||
showDashboard(charSegmenter.getThresholds(), selectedBoxes, curDashboardSelection);
|
||||
showDashboard(pipeline_data.thresholds, selectedBoxes, curDashboardSelection);
|
||||
}
|
||||
else if (waitkey == DOWN_ARROW_KEY)
|
||||
{
|
||||
if (curDashboardSelection + DASHBOARD_COLUMNS <= charSegmenter.getThresholds().size() - 1)
|
||||
if (curDashboardSelection + DASHBOARD_COLUMNS <= pipeline_data.thresholds.size() - 1)
|
||||
curDashboardSelection += DASHBOARD_COLUMNS;
|
||||
showDashboard(charSegmenter.getThresholds(), selectedBoxes, curDashboardSelection);
|
||||
showDashboard(pipeline_data.thresholds, selectedBoxes, curDashboardSelection);
|
||||
}
|
||||
else if (waitkey == UP_ARROW_KEY)
|
||||
{
|
||||
if (curDashboardSelection - DASHBOARD_COLUMNS >= 0)
|
||||
curDashboardSelection -= DASHBOARD_COLUMNS;
|
||||
showDashboard(charSegmenter.getThresholds(), selectedBoxes, curDashboardSelection);
|
||||
showDashboard(pipeline_data.thresholds, selectedBoxes, curDashboardSelection);
|
||||
}
|
||||
else if (waitkey == ENTER_KEY)
|
||||
{
|
||||
vector<char> tempdata = showCharSelection(charSegmenter.getThresholds()[curDashboardSelection], charSegmenter.characters, statecodestr);
|
||||
vector<char> tempdata = showCharSelection(pipeline_data.thresholds[curDashboardSelection], charSegmenter.characters, statecodestr);
|
||||
for (int c = 0; c < charSegmenter.characters.size(); c++)
|
||||
humanInputs[c] = tempdata[c];
|
||||
}
|
||||
else if (waitkey == SPACE_KEY)
|
||||
{
|
||||
selectedBoxes[curDashboardSelection] = !selectedBoxes[curDashboardSelection];
|
||||
showDashboard(charSegmenter.getThresholds(), selectedBoxes, curDashboardSelection);
|
||||
showDashboard(pipeline_data.thresholds, selectedBoxes, curDashboardSelection);
|
||||
}
|
||||
else if (waitkey == 's' || waitkey == 'S' || waitkey == 'W')
|
||||
{
|
||||
if (waitkey == 'W')
|
||||
{
|
||||
selectedBoxes[curDashboardSelection] = true;
|
||||
showDashboard(charSegmenter.getThresholds(), selectedBoxes, curDashboardSelection);
|
||||
showDashboard(pipeline_data.thresholds, selectedBoxes, curDashboardSelection);
|
||||
const std::string& ocr_str = ocr.postProcessor->bestChars;
|
||||
humanInputs.assign(ocr_str.begin(), ocr_str.end());
|
||||
}
|
||||
|
||||
bool somethingSelected = false;
|
||||
bool chardataTagged = false;
|
||||
for (int c = 0; c < charSegmenter.getThresholds().size(); c++)
|
||||
for (int c = 0; c < pipeline_data.thresholds.size(); c++)
|
||||
{
|
||||
if (selectedBoxes[c])
|
||||
{
|
||||
@@ -243,13 +243,13 @@ int main( int argc, const char** argv )
|
||||
if (humanInputs[c] == ' ')
|
||||
continue;
|
||||
|
||||
for (int t = 0; t < charSegmenter.getThresholds().size(); t++)
|
||||
for (int t = 0; t < pipeline_data.thresholds.size(); t++)
|
||||
{
|
||||
if (selectedBoxes[t] == false)
|
||||
continue;
|
||||
|
||||
stringstream filename;
|
||||
Mat cropped = charSegmenter.getThresholds()[t](charSegmenter.characters[c]);
|
||||
Mat cropped = pipeline_data.thresholds[t](charSegmenter.characters[c]);
|
||||
filename << outDir << "/" << humanInputs[c] << "-" << t << "-" << files[i];
|
||||
imwrite(filename.str(), cropped);
|
||||
cout << "Writing char image: " << filename.str() << endl;
|
||||
|
@@ -230,7 +230,7 @@ void plateAnalysisThread(void* arg)
|
||||
|
||||
// Tesseract OCR does not appear to be threadsafe
|
||||
dispatcher->ocrMutex.lock();
|
||||
dispatcher->ocr->performOCR(lp.charSegmenter->getThresholds(), lp.charSegmenter->characters);
|
||||
dispatcher->ocr->performOCR(&pipeline_data);
|
||||
dispatcher->ocr->postProcessor->analyze(plateResult.region, dispatcher->topN);
|
||||
const vector<PPResult> ppResults = dispatcher->ocr->postProcessor->getResults();
|
||||
dispatcher->ocrMutex.unlock();
|
||||
|
@@ -36,29 +36,26 @@ CharacterAnalysis::CharacterAnalysis(PipelineData* pipeline_data)
|
||||
|
||||
CharacterAnalysis::~CharacterAnalysis()
|
||||
{
|
||||
for (int i = 0; i < thresholds.size(); i++)
|
||||
{
|
||||
thresholds[i].release();
|
||||
}
|
||||
thresholds.clear();
|
||||
|
||||
}
|
||||
|
||||
void CharacterAnalysis::analyze()
|
||||
{
|
||||
thresholds = produceThresholds(pipeline_data->crop_gray, config);
|
||||
pipeline_data->clearThresholds();
|
||||
pipeline_data->thresholds = produceThresholds(pipeline_data->crop_gray, config);
|
||||
|
||||
|
||||
|
||||
timespec startTime;
|
||||
getTime(&startTime);
|
||||
|
||||
for (int i = 0; i < thresholds.size(); i++)
|
||||
for (int i = 0; i < pipeline_data->thresholds.size(); i++)
|
||||
{
|
||||
vector<vector<Point> > contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
|
||||
Mat tempThreshold(thresholds[i].size(), CV_8U);
|
||||
thresholds[i].copyTo(tempThreshold);
|
||||
Mat tempThreshold(pipeline_data->thresholds[i].size(), CV_8U);
|
||||
pipeline_data->thresholds[i].copyTo(tempThreshold);
|
||||
findContours(tempThreshold,
|
||||
contours, // a vector of contours
|
||||
hierarchy,
|
||||
@@ -79,9 +76,9 @@ void CharacterAnalysis::analyze()
|
||||
|
||||
getTime(&startTime);
|
||||
|
||||
for (int i = 0; i < thresholds.size(); i++)
|
||||
for (int i = 0; i < pipeline_data->thresholds.size(); i++)
|
||||
{
|
||||
vector<bool> goodIndices = this->filter(thresholds[i], allContours[i], allHierarchy[i]);
|
||||
vector<bool> goodIndices = this->filter(pipeline_data->thresholds[i], allContours[i], allHierarchy[i]);
|
||||
charSegments.push_back(goodIndices);
|
||||
|
||||
if (config->debugCharAnalysis)
|
||||
@@ -100,7 +97,7 @@ void CharacterAnalysis::analyze()
|
||||
if (hasPlateMask)
|
||||
{
|
||||
// Filter out bad contours now that we have an outer box mask...
|
||||
for (int i = 0; i < thresholds.size(); i++)
|
||||
for (int i = 0; i < pipeline_data->thresholds.size(); i++)
|
||||
{
|
||||
charSegments[i] = filterByOuterMask(allContours[i], allHierarchy[i], charSegments[i]);
|
||||
}
|
||||
@@ -108,7 +105,7 @@ void CharacterAnalysis::analyze()
|
||||
|
||||
int bestFitScore = -1;
|
||||
int bestFitIndex = -1;
|
||||
for (int i = 0; i < thresholds.size(); i++)
|
||||
for (int i = 0; i < pipeline_data->thresholds.size(); i++)
|
||||
{
|
||||
//vector<bool> goodIndices = this->filter(thresholds[i], allContours[i], allHierarchy[i]);
|
||||
//charSegments.push_back(goodIndices);
|
||||
@@ -120,7 +117,7 @@ void CharacterAnalysis::analyze()
|
||||
bestFitScore = segmentCount;
|
||||
bestFitIndex = i;
|
||||
bestCharSegments = charSegments[i];
|
||||
bestThreshold = thresholds[i];
|
||||
bestThreshold = pipeline_data->thresholds[i];
|
||||
bestContours = allContours[i];
|
||||
bestHierarchy = allHierarchy[i];
|
||||
bestCharSegmentsCount = segmentCount;
|
||||
@@ -272,7 +269,7 @@ Mat CharacterAnalysis::findOuterBoxMask()
|
||||
}
|
||||
}
|
||||
|
||||
Mat mask = Mat::zeros(thresholds[winningIndex].size(), CV_8U);
|
||||
Mat mask = Mat::zeros(pipeline_data->thresholds[winningIndex].size(), CV_8U);
|
||||
|
||||
// get rid of the outline by drawing a 1 pixel width black line
|
||||
drawContours(mask, allContours[winningIndex],
|
||||
@@ -316,7 +313,7 @@ Mat CharacterAnalysis::findOuterBoxMask()
|
||||
|
||||
if (biggestContourIndex != -1)
|
||||
{
|
||||
mask = Mat::zeros(thresholds[winningIndex].size(), CV_8U);
|
||||
mask = Mat::zeros(pipeline_data->thresholds[winningIndex].size(), CV_8U);
|
||||
|
||||
vector<Point> smoothedMaskPoints;
|
||||
approxPolyDP(contoursSecondRound[biggestContourIndex], smoothedMaskPoints, 2, true);
|
||||
@@ -337,12 +334,12 @@ Mat CharacterAnalysis::findOuterBoxMask()
|
||||
if (this->config->debugCharAnalysis)
|
||||
{
|
||||
vector<Mat> debugImgs;
|
||||
Mat debugImgMasked = Mat::zeros(thresholds[winningIndex].size(), CV_8U);
|
||||
Mat debugImgMasked = Mat::zeros(pipeline_data->thresholds[winningIndex].size(), CV_8U);
|
||||
|
||||
thresholds[winningIndex].copyTo(debugImgMasked, mask);
|
||||
pipeline_data->thresholds[winningIndex].copyTo(debugImgMasked, mask);
|
||||
|
||||
debugImgs.push_back(mask);
|
||||
debugImgs.push_back(thresholds[winningIndex]);
|
||||
debugImgs.push_back(pipeline_data->thresholds[winningIndex]);
|
||||
debugImgs.push_back(debugImgMasked);
|
||||
|
||||
Mat dashboard = drawImageDashboard(debugImgs, CV_8U, 1);
|
||||
@@ -354,7 +351,7 @@ Mat CharacterAnalysis::findOuterBoxMask()
|
||||
}
|
||||
|
||||
hasPlateMask = false;
|
||||
Mat fullMask = Mat::zeros(thresholds[0].size(), CV_8U);
|
||||
Mat fullMask = Mat::zeros(pipeline_data->thresholds[0].size(), CV_8U);
|
||||
bitwise_not(fullMask, fullMask);
|
||||
return fullMask;
|
||||
}
|
||||
|
@@ -54,7 +54,6 @@ class CharacterAnalysis
|
||||
|
||||
bool thresholdsInverted;
|
||||
|
||||
std::vector<cv::Mat> thresholds;
|
||||
std::vector<std::vector<std::vector<cv::Point> > > allContours;
|
||||
std::vector<std::vector<cv::Vec4i> > allHierarchy;
|
||||
std::vector<std::vector<bool> > charSegments;
|
||||
|
@@ -43,10 +43,10 @@ CharacterRegion::CharacterRegion(PipelineData* pipeline_data)
|
||||
if (this->debug && charAnalysis->linePolygon.size() > 0)
|
||||
{
|
||||
vector<Mat> tempDash;
|
||||
for (int z = 0; z < charAnalysis->thresholds.size(); z++)
|
||||
for (int z = 0; z < pipeline_data->thresholds.size(); z++)
|
||||
{
|
||||
Mat tmp(charAnalysis->thresholds[z].size(), charAnalysis->thresholds[z].type());
|
||||
charAnalysis->thresholds[z].copyTo(tmp);
|
||||
Mat tmp(pipeline_data->thresholds[z].size(), pipeline_data->thresholds[z].type());
|
||||
pipeline_data->thresholds[z].copyTo(tmp);
|
||||
cvtColor(tmp, tmp, CV_GRAY2BGR);
|
||||
|
||||
tempDash.push_back(tmp);
|
||||
|
@@ -48,7 +48,7 @@ CharacterSegmenter::CharacterSegmenter(PipelineData* pipeline_data)
|
||||
|
||||
if (this->config->debugCharSegmenter)
|
||||
{
|
||||
displayImage(config, "CharacterSegmenter Thresholds", drawImageDashboard(charAnalysis->thresholds, CV_8U, 3));
|
||||
displayImage(config, "CharacterSegmenter Thresholds", drawImageDashboard(pipeline_data->thresholds, CV_8U, 3));
|
||||
}
|
||||
|
||||
if (this->config->debugCharSegmenter && charAnalysis->linePolygon.size() > 0)
|
||||
@@ -106,7 +106,7 @@ CharacterSegmenter::CharacterSegmenter(PipelineData* pipeline_data)
|
||||
float avgCharWidth = median(charWidths.data(), charWidths.size());
|
||||
float avgCharHeight = median(charHeights.data(), charHeights.size());
|
||||
|
||||
removeSmallContours(charAnalysis->thresholds, charAnalysis->allContours, avgCharWidth, avgCharHeight);
|
||||
removeSmallContours(pipeline_data->thresholds, charAnalysis->allContours, avgCharWidth, avgCharHeight);
|
||||
|
||||
// Do the histogram analysis to figure out char regions
|
||||
|
||||
@@ -118,11 +118,11 @@ CharacterSegmenter::CharacterSegmenter(PipelineData* pipeline_data)
|
||||
vector<Rect> allBoxes;
|
||||
for (int i = 0; i < charAnalysis->allContours.size(); i++)
|
||||
{
|
||||
Mat histogramMask = Mat::zeros(charAnalysis->thresholds[i].size(), CV_8U);
|
||||
Mat histogramMask = Mat::zeros(pipeline_data->thresholds[i].size(), CV_8U);
|
||||
|
||||
fillConvexPoly(histogramMask, charAnalysis->linePolygon.data(), charAnalysis->linePolygon.size(), Scalar(255,255,255));
|
||||
|
||||
VerticalHistogram vertHistogram(charAnalysis->thresholds[i], histogramMask);
|
||||
VerticalHistogram vertHistogram(pipeline_data->thresholds[i], histogramMask);
|
||||
|
||||
if (this->config->debugCharSegmenter)
|
||||
{
|
||||
@@ -172,16 +172,16 @@ CharacterSegmenter::CharacterSegmenter(PipelineData* pipeline_data)
|
||||
}
|
||||
|
||||
//ColorFilter colorFilter(img, charAnalysis->getCharacterMask());
|
||||
vector<Rect> candidateBoxes = getBestCharBoxes(charAnalysis->thresholds[0], allBoxes, medianCharWidth);
|
||||
vector<Rect> candidateBoxes = getBestCharBoxes(pipeline_data->thresholds[0], allBoxes, medianCharWidth);
|
||||
|
||||
if (this->config->debugCharSegmenter)
|
||||
{
|
||||
// Setup the dashboard images to show the cleaning filters
|
||||
for (int i = 0; i < charAnalysis->thresholds.size(); i++)
|
||||
for (int i = 0; i < pipeline_data->thresholds.size(); i++)
|
||||
{
|
||||
Mat cleanImg = Mat::zeros(charAnalysis->thresholds[i].size(), charAnalysis->thresholds[i].type());
|
||||
Mat boxMask = getCharBoxMask(charAnalysis->thresholds[i], candidateBoxes);
|
||||
charAnalysis->thresholds[i].copyTo(cleanImg);
|
||||
Mat cleanImg = Mat::zeros(pipeline_data->thresholds[i].size(), pipeline_data->thresholds[i].type());
|
||||
Mat boxMask = getCharBoxMask(pipeline_data->thresholds[i], candidateBoxes);
|
||||
pipeline_data->thresholds[i].copyTo(cleanImg);
|
||||
bitwise_and(cleanImg, boxMask, cleanImg);
|
||||
cvtColor(cleanImg, cleanImg, CV_GRAY2BGR);
|
||||
|
||||
@@ -193,19 +193,19 @@ CharacterSegmenter::CharacterSegmenter(PipelineData* pipeline_data)
|
||||
|
||||
getTime(&startTime);
|
||||
|
||||
filterEdgeBoxes(charAnalysis->thresholds, candidateBoxes, medianCharWidth, avgCharHeight);
|
||||
filterEdgeBoxes(pipeline_data->thresholds, candidateBoxes, medianCharWidth, avgCharHeight);
|
||||
|
||||
candidateBoxes = filterMostlyEmptyBoxes(charAnalysis->thresholds, candidateBoxes);
|
||||
candidateBoxes = filterMostlyEmptyBoxes(pipeline_data->thresholds, candidateBoxes);
|
||||
|
||||
candidateBoxes = combineCloseBoxes(candidateBoxes, medianCharWidth);
|
||||
|
||||
cleanCharRegions(charAnalysis->thresholds, candidateBoxes);
|
||||
cleanMostlyFullBoxes(charAnalysis->thresholds, candidateBoxes);
|
||||
cleanCharRegions(pipeline_data->thresholds, candidateBoxes);
|
||||
cleanMostlyFullBoxes(pipeline_data->thresholds, candidateBoxes);
|
||||
|
||||
//cleanBasedOnColor(thresholds, colorFilter.colorMask, candidateBoxes);
|
||||
|
||||
candidateBoxes = filterMostlyEmptyBoxes(charAnalysis->thresholds, candidateBoxes);
|
||||
this->characters = candidateBoxes;
|
||||
candidateBoxes = filterMostlyEmptyBoxes(pipeline_data->thresholds, candidateBoxes);
|
||||
pipeline_data->charRegions = candidateBoxes;
|
||||
|
||||
if (config->debugTiming)
|
||||
{
|
||||
@@ -216,7 +216,7 @@ CharacterSegmenter::CharacterSegmenter(PipelineData* pipeline_data)
|
||||
|
||||
if (this->config->debugCharSegmenter)
|
||||
{
|
||||
Mat imgDash = drawImageDashboard(charAnalysis->thresholds, CV_8U, 3);
|
||||
Mat imgDash = drawImageDashboard(pipeline_data->thresholds, CV_8U, 3);
|
||||
displayImage(config, "Segmentation after cleaning", imgDash);
|
||||
|
||||
Mat generalDash = drawImageDashboard(this->imgDbgGeneral, this->imgDbgGeneral[0].type(), 2);
|
||||
@@ -490,7 +490,7 @@ vector<Rect> CharacterSegmenter::combineCloseBoxes( vector<Rect> charBoxes, floa
|
||||
newCharBoxes.push_back(bigRect);
|
||||
if (this->config->debugCharSegmenter)
|
||||
{
|
||||
for (int z = 0; z < charAnalysis->thresholds.size(); z++)
|
||||
for (int z = 0; z < pipeline_data->thresholds.size(); z++)
|
||||
{
|
||||
Point center(bigRect.x + bigRect.width / 2, bigRect.y + bigRect.height / 2);
|
||||
RotatedRect rrect(center, Size2f(bigRect.width, bigRect.height + (bigRect.height / 2)), 0);
|
||||
@@ -1140,7 +1140,4 @@ Mat CharacterSegmenter::getCharBoxMask(Mat img_threshold, vector<Rect> charBoxes
|
||||
return mask;
|
||||
}
|
||||
|
||||
vector<Mat> CharacterSegmenter::getThresholds()
|
||||
{
|
||||
return charAnalysis->thresholds;
|
||||
}
|
||||
|
||||
|
@@ -50,7 +50,6 @@ class CharacterSegmenter
|
||||
std::vector<cv::Rect> characters;
|
||||
int confidence;
|
||||
|
||||
std::vector<cv::Mat> getThresholds();
|
||||
|
||||
private:
|
||||
Config* config;
|
||||
|
@@ -51,12 +51,12 @@ class LicensePlateCandidate
|
||||
|
||||
void recognize();
|
||||
|
||||
CharacterSegmenter* charSegmenter;
|
||||
|
||||
private:
|
||||
PipelineData* pipeline_data;
|
||||
Config* config;
|
||||
|
||||
CharacterSegmenter* charSegmenter;
|
||||
|
||||
cv::Mat filterByCharacterHue(std::vector<std::vector<cv::Point> > charRegionContours);
|
||||
std::vector<cv::Point> findPlateCorners(cv::Mat inputImage, PlateLines plateLines, CharacterRegion charRegion); // top-left, top-right, bottom-right, bottom-left
|
||||
|
@@ -52,7 +52,7 @@ OCR::~OCR()
|
||||
delete tesseract;
|
||||
}
|
||||
|
||||
void OCR::performOCR(vector<Mat> thresholds, vector<Rect> charRegions)
|
||||
void OCR::performOCR(PipelineData* pipeline_data)
|
||||
{
|
||||
timespec startTime;
|
||||
getTime(&startTime);
|
||||
@@ -60,18 +60,20 @@ void OCR::performOCR(vector<Mat> thresholds, vector<Rect> charRegions)
|
||||
postProcessor->clear();
|
||||
|
||||
// Don't waste time on OCR processing if it is impossible to get sufficient characters
|
||||
if (charRegions.size() < config->postProcessMinCharacters)
|
||||
if (pipeline_data->charRegions.size() < config->postProcessMinCharacters)
|
||||
return;
|
||||
|
||||
for (int i = 0; i < thresholds.size(); i++)
|
||||
for (int i = 0; i < pipeline_data->thresholds.size(); i++)
|
||||
{
|
||||
// Make it black text on white background
|
||||
bitwise_not(thresholds[i], thresholds[i]);
|
||||
tesseract->SetImage((uchar*) thresholds[i].data, thresholds[i].size().width, thresholds[i].size().height, thresholds[i].channels(), thresholds[i].step1());
|
||||
bitwise_not(pipeline_data->thresholds[i], pipeline_data->thresholds[i]);
|
||||
tesseract->SetImage((uchar*) pipeline_data->thresholds[i].data,
|
||||
pipeline_data->thresholds[i].size().width, pipeline_data->thresholds[i].size().height,
|
||||
pipeline_data->thresholds[i].channels(), pipeline_data->thresholds[i].step1());
|
||||
|
||||
for (int j = 0; j < charRegions.size(); j++)
|
||||
for (int j = 0; j < pipeline_data->charRegions.size(); j++)
|
||||
{
|
||||
Rect expandedRegion = expandRect( charRegions[j], 2, 2, thresholds[i].cols, thresholds[i].rows) ;
|
||||
Rect expandedRegion = expandRect( pipeline_data->charRegions[j], 2, 2, pipeline_data->thresholds[i].cols, pipeline_data->thresholds[i].rows) ;
|
||||
|
||||
tesseract->SetRectangle(expandedRegion.x, expandedRegion.y, expandedRegion.width, expandedRegion.height);
|
||||
tesseract->Recognize(NULL);
|
||||
|
@@ -26,6 +26,7 @@
|
||||
#include "utility.h"
|
||||
#include "postprocess.h"
|
||||
#include "config.h"
|
||||
#include "pipeline_data.h"
|
||||
|
||||
#include "constants.h"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
@@ -39,7 +40,7 @@ class OCR
|
||||
OCR(Config* config);
|
||||
virtual ~OCR();
|
||||
|
||||
void performOCR(std::vector<cv::Mat> thresholds, std::vector<cv::Rect> charRegions);
|
||||
void performOCR(PipelineData* pipeline_data);
|
||||
|
||||
PostProcess* postProcessor;
|
||||
//string recognizedText;
|
||||
|
@@ -17,3 +17,12 @@ PipelineData::PipelineData(Mat colorImage, Rect regionOfInterest, Config* config
|
||||
PipelineData::~PipelineData()
|
||||
{
|
||||
}
|
||||
|
||||
void PipelineData::clearThresholds()
|
||||
{
|
||||
for (int i = 0; i < thresholds.size(); i++)
|
||||
{
|
||||
thresholds[i].release();
|
||||
}
|
||||
thresholds.clear();
|
||||
}
|
||||
|
@@ -13,6 +13,8 @@ class PipelineData
|
||||
PipelineData(cv::Mat colorImage, cv::Rect regionOfInterest, Config* config);
|
||||
virtual ~PipelineData();
|
||||
|
||||
void clearThresholds();
|
||||
|
||||
// Inputs
|
||||
Config* config;
|
||||
|
||||
@@ -35,6 +37,7 @@ class PipelineData
|
||||
|
||||
float overall_confidence;
|
||||
|
||||
std::vector<cv::Rect> charRegions;
|
||||
|
||||
// Plate Lines
|
||||
std::vector<LineSegment> horizontalLines;
|
||||
|
Reference in New Issue
Block a user