mirror of
https://github.com/dev6699/yolotriton.git
synced 2025-09-26 19:51:13 +08:00
111 lines
2.5 KiB
Go
111 lines
2.5 KiB
Go
package yolotriton
|
|
|
|
import (
|
|
"image"
|
|
"math"
|
|
|
|
triton "github.com/dev6699/yolotriton/grpc-client"
|
|
)
|
|
|
|
type YoloNAS struct {
|
|
YoloTritonConfig
|
|
metadata struct {
|
|
xOffset float32
|
|
yOffset float32
|
|
scaleFactor float32
|
|
}
|
|
}
|
|
|
|
func NewYoloNAS(cfg YoloTritonConfig) Model {
|
|
return &YoloNAS{
|
|
YoloTritonConfig: cfg,
|
|
}
|
|
}
|
|
|
|
var _ Model = &YoloNAS{}
|
|
|
|
func (y *YoloNAS) GetConfig() YoloTritonConfig {
|
|
return y.YoloTritonConfig
|
|
}
|
|
|
|
func (y *YoloNAS) PreProcess(img image.Image, targetWidth uint, targetHeight uint) (*triton.InferTensorContents, error) {
|
|
height := img.Bounds().Dy()
|
|
width := img.Bounds().Dx()
|
|
|
|
// https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/processing/processing.py#L547
|
|
scaleFactor := math.Min(float64(636)/float64(height), float64(636)/float64(width))
|
|
if scaleFactor != 1.0 {
|
|
newHeight := uint(math.Round(float64(height) * scaleFactor))
|
|
newWidth := uint(math.Round(float64(width) * scaleFactor))
|
|
img = resizeImage(img, newWidth, newHeight)
|
|
}
|
|
|
|
paddedImage, xOffset, yOffset := padImageToCenterWithGray(img, int(targetWidth), int(targetHeight), 114)
|
|
|
|
fp32Contents := imageToFloat32Slice(paddedImage)
|
|
|
|
y.metadata.xOffset = float32(xOffset)
|
|
y.metadata.yOffset = float32(yOffset)
|
|
y.metadata.scaleFactor = float32(scaleFactor)
|
|
|
|
contents := &triton.InferTensorContents{
|
|
Fp32Contents: fp32Contents,
|
|
}
|
|
return contents, nil
|
|
}
|
|
|
|
func (y *YoloNAS) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
|
|
predScores, err := bytesToFloat32Slice(rawOutputContents[0])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
predBoxes, err := bytesToFloat32Slice(rawOutputContents[1])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
boxes := []Box{}
|
|
|
|
for index := 0; index < y.NumObjects; index++ {
|
|
|
|
classID := 0
|
|
prob := float32(0.0)
|
|
|
|
for col := 0; col < y.NumClasses; col++ {
|
|
p := predScores[index*y.NumClasses+(col)]
|
|
if p > prob {
|
|
prob = p
|
|
classID = col
|
|
}
|
|
}
|
|
|
|
if prob < y.MinProbability {
|
|
continue
|
|
}
|
|
|
|
label := y.Classes[classID]
|
|
idx := (index * 4)
|
|
x1raw := predBoxes[idx]
|
|
y1raw := predBoxes[idx+1]
|
|
x2raw := predBoxes[idx+2]
|
|
y2raw := predBoxes[idx+3]
|
|
|
|
scale := y.metadata.scaleFactor
|
|
x1 := (x1raw - y.metadata.xOffset) / scale
|
|
y1 := (y1raw - y.metadata.yOffset) / scale
|
|
x2 := (x2raw - y.metadata.xOffset) / scale
|
|
y2 := (y2raw - y.metadata.yOffset) / scale
|
|
|
|
boxes = append(boxes, Box{
|
|
X1: float64(x1),
|
|
Y1: float64(y1),
|
|
X2: float64(x2),
|
|
Y2: float64(y2),
|
|
Probability: float64(prob),
|
|
Class: label,
|
|
})
|
|
}
|
|
|
|
return boxes, nil
|
|
}
|