feat: added support for YOLO-NAS

This commit is contained in:
kweijack
2023-09-06 03:46:09 +00:00
parent cbcfdb9189
commit fea4ba6dc0
18 changed files with 394 additions and 138 deletions

View File

@@ -4,7 +4,7 @@
[![Go Report Card](https://goreportcard.com/badge/github.com/dev6699/yolotriton)](https://goreportcard.com/report/github.com/dev6699/yolotriton)
[![License](https://img.shields.io/github/license/dev6699/yolotriton)](LICENSE)
Go (Golang) gRPC client for YOLOv8 inference using the Triton Inference Server.
Go (Golang) gRPC client for YOLO-NAS, YOLOv8 inference using the Triton Inference Server.
## Installation
@@ -14,11 +14,12 @@ Use `go get` to install this package:
go get github.com/dev6699/yolotriton
```
### Get YOLOv8 TensorRT model
### Get YOLO-NAS, YOLOv8 TensorRT model
Replace `yolov8m.pt` with your desired model
```bash
pip install ultralytics
yolo export model=yolov8m.pt format=onnx
trtexec --onnx=yolov8m.onnx --saveEngine=model_repository/yolov8_tensorrt/1/model.plan
trtexec --onnx=yolov8m.onnx --saveEngine=model_repository/yolov8/1/model.plan
```
References:
@@ -39,20 +40,39 @@ Check [cmd/main.go](cmd/main.go) for more details.
Available args:
```bash
-i string
Inference Image. Default: images/1.jpg (default "images/1.jpg")
Inference Image. (default "images/1.jpg")
-m string
Name of model being served. (Required) (default "yolov8_tensorrt")
Name of model being served (Required) (default "yolonas")
-t string
Type of model. Available options: [yolonas, yolov8] (default "yolonas")
-u string
Inference Server URL. Default: tritonserver:8001 (default "tritonserver:8001")
Inference Server URL. (default "tritonserver:8001")
-x string
Version of model. Default: Latest Version.
Version of model. Default: Latest Version
```
```bash
go run cmd/main.go
```
### Results
| Input | Ouput |
| --------------------------- | ------------------------------- |
| <img src="images/1.jpg" /> | <img src="images/1_out.jpg" /> |
| <img src="images/2.jpg" /> | <img src="images/2_out.jpg" /> |
```
prediction: 0
class: dog
confidence: 0.96
bboxes: [ 669 130 1061 563 ]
---------------------
prediction: 1
class: person
confidence: 0.96
bboxes: [ 440 30 760 541 ]
---------------------
prediction: 2
class: dog
confidence: 0.93
bboxes: [ 168 83 495 592 ]
---------------------
```
| Input | YOLO-NAS Ouput | YOLOv8 Output |
| --------------------------- | --------------------------------------- | -------------------------------------- |
| <img src="images/1.jpg" /> | <img src="images/1_yolonas_out.jpg" /> | <img src="images/1_yolonas_out.jpg" /> |
| <img src="images/2.jpg" /> | <img src="images/2_yolonas_out.jpg" /> | <img src="images/2_yolonas_out.jpg" /> |

View File

@@ -12,16 +12,18 @@ import (
type Flags struct {
ModelName string
ModelVersion string
ModelType string
URL string
Image string
}
func parseFlags() Flags {
var flags Flags
flag.StringVar(&flags.ModelName, "m", "yolov8_tensorrt", "Name of model being served. (Required)")
flag.StringVar(&flags.ModelVersion, "x", "", "Version of model. Default: Latest Version.")
flag.StringVar(&flags.URL, "u", "tritonserver:8001", "Inference Server URL. Default: tritonserver:8001")
flag.StringVar(&flags.Image, "i", "images/1.jpg", "Inference Image. Default: images/1.jpg")
flag.StringVar(&flags.ModelName, "m", "yolonas", "Name of model being served (Required)")
flag.StringVar(&flags.ModelVersion, "x", "", "Version of model. Default: Latest Version")
flag.StringVar(&flags.ModelType, "t", "yolonas", "Type of model. Available options: [yolonas, yolov8]")
flag.StringVar(&flags.URL, "u", "tritonserver:8001", "Inference Server URL.")
flag.StringVar(&flags.Image, "i", "images/1.jpg", "Inference Image.")
flag.Parse()
return flags
}
@@ -30,20 +32,17 @@ func main() {
FLAGS := parseFlags()
fmt.Println("FLAGS:", FLAGS)
ygt, err := yolotriton.New(
FLAGS.URL,
yolotriton.YoloTritonConfig{
BatchSize: 1,
NumChannels: 84,
NumObjects: 8400,
Width: 640,
Height: 640,
ModelName: FLAGS.ModelName,
ModelVersion: FLAGS.ModelVersion,
MinProbability: 0.5,
MaxIOU: 0.7,
})
var model yolotriton.Model
switch yolotriton.ModelType(FLAGS.ModelType) {
case yolotriton.ModelTypeYoloV8:
model = yolotriton.NewYoloV8(FLAGS.ModelName, FLAGS.ModelVersion)
case yolotriton.ModelTypeYoloNAS:
model = yolotriton.NewYoloNAS(FLAGS.ModelName, FLAGS.ModelVersion)
default:
log.Fatalf("Unsupported model: %s. Available options: [yolonas, yolov8]", FLAGS.ModelType)
}
ygt, err := yolotriton.New(FLAGS.URL, model)
if err != nil {
log.Fatal(err)
}
@@ -59,17 +58,24 @@ func main() {
}
for i, r := range results {
fmt.Printf("---%d---", i)
fmt.Println(r.Class, r.Probability)
fmt.Println("[x1,x2,y1,y2]", int(r.X1), int(r.X2), int(r.Y1), int(r.Y2))
fmt.Println("prediction: ", i)
fmt.Println("class: ", r.Class)
fmt.Printf("confidence: %.2f\n", r.Probability)
fmt.Println("bboxes: [", int(r.X1), int(r.Y1), int(r.X2), int(r.Y2), "]")
fmt.Println("---------------------")
}
out, err := yolotriton.DrawBoundingBoxes(img, results, 5)
out, err := yolotriton.DrawBoundingBoxes(
img,
results,
int(float64(img.Bounds().Dx())*0.005),
float64(img.Bounds().Dx())*0.02,
)
if err != nil {
log.Fatal(err)
}
err = yolotriton.SaveImage(out, fmt.Sprintf("%s_out.jpg", strings.Split(FLAGS.Image, ".")[0]))
err = yolotriton.SaveImage(out, fmt.Sprintf("%s_%s_out.jpg", strings.Split(FLAGS.Image, ".")[0], FLAGS.ModelName))
if err != nil {
log.Fatal(err)
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 96 KiB

After

Width:  |  Height:  |  Size: 88 KiB

BIN
images/1_yolonas_out.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

BIN
images/1_yolov8_out.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.3 MiB

BIN
images/2_yolonas_out.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

BIN
images/2_yolov8_out.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

View File

@@ -1 +1 @@
yolov8_tensorrt/1/model.plan
model.plan

View File

@@ -1,2 +1,2 @@
name: "yolov8_tensorrt"
name: "yolonas"
platform: "tensorrt_plan"

View File

View File

@@ -0,0 +1,2 @@
name: "yolov8"
platform: "tensorrt_plan"

View File

@@ -3,30 +3,30 @@ package yolotriton
import (
"bytes"
"encoding/binary"
"io"
"math"
"sort"
)
func (y *YoloTriton) bytesToFloat32Slice(data []byte) ([]float32, error) {
func bytesToFloat32Slice(data []byte) ([]float32, error) {
t := []float32{}
// Create a buffer from the input data
buffer := bytes.NewReader(data)
for i := 0; i < y.cfg.BatchSize; i++ {
for j := 0; j < y.cfg.NumChannels; j++ {
for k := 0; k < y.cfg.NumObjects; k++ {
// Read the binary data from the buffer
var binaryValue uint32
err := binary.Read(buffer, binary.LittleEndian, &binaryValue)
if err != nil {
return nil, err
}
t = append(t, math.Float32frombits(binaryValue))
for {
// Read the binary data from the buffer
var binaryValue uint32
err := binary.Read(buffer, binary.LittleEndian, &binaryValue)
if err != nil {
if err == io.EOF {
break
}
return nil, err
}
t = append(t, math.Float32frombits(binaryValue))
}
return t, nil
}
@@ -39,62 +39,6 @@ type Box struct {
Class string
}
func (y *YoloTriton) parseOutput(output []float32, origImgWidth, origImgHeight int) []Box {
boxes := []Box{}
for index := 0; index < y.cfg.NumObjects; index++ {
classID := 0
prob := float32(0.0)
for col := 0; col < y.cfg.NumChannels-4; col++ {
if output[y.cfg.NumObjects*(col+4)+index] > prob {
prob = output[y.cfg.NumObjects*(col+4)+index]
classID = col
}
}
if prob < float32(y.cfg.MinProbability) {
continue
}
label := yoloClasses[classID]
xc := output[index]
yc := output[y.cfg.NumObjects+index]
w := output[2*y.cfg.NumObjects+index]
h := output[3*y.cfg.NumObjects+index]
x1 := (xc - w/2) / float32(y.cfg.Width) * float32(origImgWidth)
y1 := (yc - h/2) / float32(y.cfg.Height) * float32(origImgHeight)
x2 := (xc + w/2) / float32(y.cfg.Width) * float32(origImgWidth)
y2 := (yc + h/2) / float32(y.cfg.Height) * float32(origImgHeight)
boxes = append(boxes, Box{
X1: float64(x1),
Y1: float64(y1),
X2: float64(x2),
Y2: float64(y2),
Probability: float64(prob),
Class: label,
})
}
sort.Slice(boxes, func(i, j int) bool {
return boxes[i].Probability < boxes[j].Probability
})
result := []Box{}
for len(boxes) > 0 {
result = append(result, boxes[0])
tmp := []Box{}
for _, box := range boxes {
if iou(boxes[0], box) < y.cfg.MaxIOU {
tmp = append(tmp, box)
}
}
boxes = tmp
}
return result
}
func iou(box1, box2 Box) float64 {
// Calculate the coordinates of the intersection rectangle
intersectionX1 := math.Max(box1.X1, box2.X1)

View File

@@ -44,7 +44,7 @@ func SaveImage(img image.Image, filename string) error {
return nil
}
func DrawBoundingBoxes(img image.Image, boxes []Box, lineWidth int) (image.Image, error) {
func DrawBoundingBoxes(img image.Image, boxes []Box, lineWidth int, fontSize float64) (image.Image, error) {
// Create a new RGBA image to draw the bounding boxes and text labels on
bounds := img.Bounds()
@@ -62,7 +62,7 @@ func DrawBoundingBoxes(img image.Image, boxes []Box, lineWidth int) (image.Image
return nil, err
}
face := truetype.NewFace(ttfFont, &truetype.Options{
Size: 36.0,
Size: fontSize,
})
// Draw the bounding boxes and text labels on the destination image

108
yolo.go
View File

@@ -3,39 +3,53 @@ package yolotriton
import (
"image"
_ "image/png"
"sort"
triton "github.com/dev6699/yolotriton/grpc-client"
"google.golang.org/grpc"
"google.golang.org/grpc/credentials/insecure"
)
type ModelType string
const (
ModelTypeYoloV8 ModelType = "yolov8"
ModelTypeYoloNAS ModelType = "yolonas"
)
type Model interface {
GetConfig() YoloTritonConfig
PreProcess(img image.Image, targetWidth uint, targetHeight uint) ([]float32, error)
PostProcess(rawOutputContents [][]byte) ([]Box, error)
}
type YoloTritonConfig struct {
BatchSize int
NumChannels int
NumObjects int
Width int
Height int
ModelName string
ModelVersion string
MinProbability float64
MinProbability float32
MaxIOU float64
}
func New(url string, cfg YoloTritonConfig) (*YoloTriton, error) {
func New(url string, model Model) (*YoloTriton, error) {
conn, err := grpc.Dial(url, grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
return nil, err
}
return &YoloTriton{
cfg: cfg,
conn: conn,
conn: conn,
model: model,
cfg: model.GetConfig(),
}, nil
}
type YoloTriton struct {
cfg YoloTritonConfig
conn *grpc.ClientConn
cfg YoloTritonConfig
conn *grpc.ClientConn
model Model
}
func (y *YoloTriton) Close() error {
@@ -44,32 +58,49 @@ func (y *YoloTriton) Close() error {
func (y *YoloTriton) Infer(img image.Image) ([]Box, error) {
preprocessedImg := resizeImage(img, uint(y.cfg.Width), uint(y.cfg.Height))
fp32Contents := imageToFloat32Slice(preprocessedImg)
client := triton.NewGRPCInferenceServiceClient(y.conn)
inferInputs := []*triton.ModelInferRequest_InferInputTensor{
{
Name: "images",
Datatype: "FP32",
Shape: []int64{int64(y.cfg.BatchSize), 3, int64(y.cfg.Width), int64(y.cfg.Height)},
Contents: &triton.InferTensorContents{
Fp32Contents: fp32Contents,
},
},
}
inferOutputs := []*triton.ModelInferRequest_InferRequestedOutputTensor{
{
Name: "output0",
},
metaResponse, err := ModelMetadataRequest(client, y.cfg.ModelName, y.cfg.ModelVersion)
if err != nil {
return nil, err
}
modelInferRequest := &triton.ModelInferRequest{
ModelName: y.cfg.ModelName,
ModelVersion: y.cfg.ModelVersion,
Inputs: inferInputs,
Outputs: inferOutputs,
}
input := metaResponse.Inputs[0]
if input.Shape[0] == -1 {
input.Shape[0] = 1
}
inputWidth := input.Shape[2]
inputHeight := input.Shape[3]
fp32Contents, err := y.model.PreProcess(img, uint(inputWidth), uint(inputHeight))
if err != nil {
return nil, err
}
modelInferRequest.Inputs = append(modelInferRequest.Inputs,
&triton.ModelInferRequest_InferInputTensor{
Name: input.Name,
Datatype: input.Datatype,
Shape: input.Shape,
Contents: &triton.InferTensorContents{
// Simply assume all are fp32
Fp32Contents: fp32Contents,
},
},
)
for _, o := range metaResponse.Outputs {
modelInferRequest.Outputs = append(modelInferRequest.Outputs,
&triton.ModelInferRequest_InferRequestedOutputTensor{
Name: o.Name,
},
)
}
inferResponse, err := ModelInferRequest(client, modelInferRequest)
@@ -77,11 +108,26 @@ func (y *YoloTriton) Infer(img image.Image) ([]Box, error) {
return nil, err
}
t, err := y.bytesToFloat32Slice(inferResponse.RawOutputContents[0])
boxes, err := y.model.PostProcess(inferResponse.RawOutputContents)
if err != nil {
return nil, err
}
boxes := y.parseOutput(t, img.Bounds().Dx(), img.Bounds().Dy())
return boxes, nil
sort.Slice(boxes, func(i, j int) bool {
return boxes[i].Probability > boxes[j].Probability
})
result := []Box{}
for len(boxes) > 0 {
result = append(result, boxes[0])
tmp := []Box{}
for _, box := range boxes {
if iou(boxes[0], box) < y.cfg.MaxIOU {
tmp = append(tmp, box)
}
}
boxes = tmp
}
return result, nil
}

140
yolonas.go Normal file
View File

@@ -0,0 +1,140 @@
package yolotriton
import (
"image"
"image/color"
"image/draw"
"math"
)
type YoloNAS struct {
YoloTritonConfig
metadata struct {
xOffset float32
yOffset float32
scaleFactor float32
}
}
func NewYoloNAS(modelName string, modelVersion string) Model {
return &YoloNAS{
YoloTritonConfig: YoloTritonConfig{
BatchSize: 1,
NumChannels: 80,
NumObjects: 8400,
MinProbability: 0.5,
MaxIOU: 0.7,
ModelName: modelName,
ModelVersion: modelVersion,
},
}
}
var _ Model = &YoloNAS{}
func (y *YoloNAS) GetConfig() YoloTritonConfig {
return y.YoloTritonConfig
}
func (y *YoloNAS) PreProcess(img image.Image, targetWidth uint, targetHeight uint) ([]float32, error) {
height := img.Bounds().Dy()
width := img.Bounds().Dx()
// https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/processing/processing.py#L547
scaleFactor := math.Min(float64(636)/float64(height), float64(636)/float64(width))
if scaleFactor != 1.0 {
newHeight := uint(math.Round(float64(height) * scaleFactor))
newWidth := uint(math.Round(float64(width) * scaleFactor))
img = resizeImage(img, newWidth, newHeight)
}
paddedImage, xOffset, yOffset := padImageToCenterWithGray(img, int(targetWidth), int(targetHeight), 114)
fp32Contents := imageToFloat32Slice(paddedImage)
y.metadata.xOffset = float32(xOffset)
y.metadata.yOffset = float32(yOffset)
y.metadata.scaleFactor = float32(scaleFactor)
return fp32Contents, nil
}
func (y *YoloNAS) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
predScores, err := bytesToFloat32Slice(rawOutputContents[0])
if err != nil {
return nil, err
}
predBoxes, err := bytesToFloat32Slice(rawOutputContents[1])
if err != nil {
return nil, err
}
boxes := []Box{}
for index := 0; index < y.NumObjects; index++ {
classID := 0
prob := float32(0.0)
for col := 0; col < y.NumChannels; col++ {
p := predScores[index*y.NumChannels+(col)]
if p > prob {
prob = p
classID = col
}
}
if prob < y.MinProbability {
continue
}
label := yoloClasses[classID]
i := (index * 4)
xc := predBoxes[i]
yc := predBoxes[i+1]
w := predBoxes[i+2]
h := predBoxes[i+3]
scale := y.metadata.scaleFactor
x1 := (xc - y.metadata.xOffset) / scale
y1 := (yc - y.metadata.yOffset) / scale
x2 := (w - y.metadata.xOffset) / scale
y2 := (h - y.metadata.yOffset) / scale
boxes = append(boxes, Box{
X1: float64(x1),
Y1: float64(y1),
X2: float64(x2),
Y2: float64(y2),
Probability: float64(prob),
Class: label,
})
}
return boxes, nil
}
func padImageToCenterWithGray(originalImage image.Image, targetWidth, targetHeight int, grayValue uint8) (image.Image, int, int) {
// Calculate the dimensions of the original image
originalWidth := originalImage.Bounds().Dx()
originalHeight := originalImage.Bounds().Dy()
// Calculate the padding dimensions
padWidth := targetWidth - originalWidth
padHeight := targetHeight - originalHeight
// Create a new RGBA image with the desired dimensions and fill it with gray
paddedImage := image.NewRGBA(image.Rect(0, 0, targetWidth, targetHeight))
grayColor := color.RGBA{grayValue, grayValue, grayValue, 255}
draw.Draw(paddedImage, paddedImage.Bounds(), &image.Uniform{grayColor}, image.Point{}, draw.Src)
// Calculate the position to paste the original image in the center
xOffset := int(math.Floor(float64(padWidth) / 2))
yOffset := int(math.Floor(float64(padHeight) / 2))
// Paste the original image onto the padded image
pasteRect := image.Rect(xOffset, yOffset, xOffset+originalWidth, yOffset+originalHeight)
draw.Draw(paddedImage, pasteRect, originalImage, image.Point{}, draw.Over)
return paddedImage, xOffset, yOffset
}

98
yolov8.go Normal file
View File

@@ -0,0 +1,98 @@
package yolotriton
import (
"image"
)
type YoloV8 struct {
YoloTritonConfig
metadata struct {
scaleFactorW float32
scaleFactorH float32
}
}
func NewYoloV8(modelName string, modelVersion string) Model {
return &YoloV8{
YoloTritonConfig: YoloTritonConfig{
BatchSize: 1,
NumChannels: 84,
NumObjects: 8400,
MinProbability: 0.5,
MaxIOU: 0.7,
ModelName: modelName,
ModelVersion: modelVersion,
},
}
}
var _ Model = &YoloV8{}
func (y *YoloV8) GetConfig() YoloTritonConfig {
return y.YoloTritonConfig
}
func (y *YoloV8) PreProcess(img image.Image, targetWidth uint, targetHeight uint) ([]float32, error) {
width := img.Bounds().Dx()
height := img.Bounds().Dy()
preprocessedImg := resizeImage(img, targetWidth, targetHeight)
fp32Contents := imageToFloat32Slice(preprocessedImg)
y.metadata.scaleFactorW = float32(width) / float32(targetWidth)
y.metadata.scaleFactorH = float32(height) / float32(targetHeight)
return fp32Contents, nil
}
func (y *YoloV8) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
output, err := bytesToFloat32Slice(rawOutputContents[0])
if err != nil {
return nil, err
}
numObjects := y.NumObjects
numChannels := y.NumChannels
boxes := []Box{}
for index := 0; index < numObjects; index++ {
classID := 0
prob := float32(0.0)
for col := 0; col < numChannels-4; col++ {
p := output[numObjects*(col+4)+index]
if p > prob {
prob = p
classID = col
}
}
if prob < y.MinProbability {
continue
}
label := yoloClasses[classID]
xc := output[index]
yc := output[numObjects+index]
w := output[2*numObjects+index]
h := output[3*numObjects+index]
x1 := (xc - w/2) * y.metadata.scaleFactorW
y1 := (yc - h/2) * y.metadata.scaleFactorH
x2 := (xc + w/2) * y.metadata.scaleFactorW
y2 := (yc + h/2) * y.metadata.scaleFactorH
boxes = append(boxes, Box{
X1: float64(x1),
Y1: float64(y1),
X2: float64(x2),
Y2: float64(y2),
Probability: float64(prob),
Class: label,
})
}
return boxes, nil
}