mirror of
https://github.com/MarcA711/rknn-models.git
synced 2025-10-04 23:23:13 +08:00
build multiple suffixes and socs at once
This commit is contained in:
107
conv.py
107
conv.py
@@ -1,60 +1,63 @@
|
||||
from rknn.api import RKNN
|
||||
import os
|
||||
|
||||
INPUT_MODEL = "yolov8x.onnx"
|
||||
WIDTH = 320
|
||||
HEIGHT = 320
|
||||
OUTPUT_MODEL_BASENAME = 'yolov8x'
|
||||
QUANTIZATION = False
|
||||
DATASET = './dataset_coco10.txt'
|
||||
for suffix in ["n", "s", "m", "l", "x"]:
|
||||
for soc in ["rk3562","rk3566", "rk3568", "rk3588"]:
|
||||
INPUT_MODEL = 'yolov8{}.onnx'.format(suffix)
|
||||
WIDTH = 320
|
||||
HEIGHT = 320
|
||||
OUTPUT_MODEL_BASENAME = 'yolov8{}'.format(suffix)
|
||||
QUANTIZATION = False
|
||||
DATASET = './dataset_coco10.txt'
|
||||
|
||||
# Config
|
||||
MEAN_VALUES = [[0, 0, 0]]
|
||||
STD_VALUES = [[255, 255, 255]]
|
||||
QUANT_IMG_RGB2BGR = True
|
||||
QUANTIZED_DTYPE = "asymmetric_quantized-8"
|
||||
QUANTIZED_ALGORITHM = "normal"
|
||||
QUANTIZED_METHOD = "channel"
|
||||
FLOAT_DTYPE = "float16"
|
||||
OPTIMIZATION_LEVEL = 2
|
||||
TARGET_PLATFORM = "rk3588"
|
||||
CUSTOM_STRING = None
|
||||
REMOVE_WEIGHT = None
|
||||
COMPRESS_WEIGHT = False
|
||||
SINGLE_CORE_MODE = False
|
||||
MODEL_PRUNNING = False
|
||||
OP_TARGET = None
|
||||
DYNAMIC_INPUT = None
|
||||
# Config
|
||||
MEAN_VALUES = [[0, 0, 0]]
|
||||
STD_VALUES = [[255, 255, 255]]
|
||||
QUANT_IMG_RGB2BGR = True
|
||||
QUANTIZED_DTYPE = "asymmetric_quantized-8"
|
||||
QUANTIZED_ALGORITHM = "normal"
|
||||
QUANTIZED_METHOD = "channel"
|
||||
FLOAT_DTYPE = "float16"
|
||||
OPTIMIZATION_LEVEL = 2
|
||||
TARGET_PLATFORM = soc
|
||||
CUSTOM_STRING = None
|
||||
REMOVE_WEIGHT = None
|
||||
COMPRESS_WEIGHT = False
|
||||
SINGLE_CORE_MODE = False
|
||||
MODEL_PRUNNING = False
|
||||
OP_TARGET = None
|
||||
DYNAMIC_INPUT = None
|
||||
|
||||
OUTPUT_MODEL_FILE = "./output/{}/{}-{}x{}-{}.rknn".format(soc, OUTPUT_MODEL_BASENAME, WIDTH, HEIGHT, soc)
|
||||
os.makedirs("./output/{}".format(soc), exist_ok=True)
|
||||
|
||||
OUTPUT_MODEL = OUTPUT_MODEL_BASENAME + '-' + str(WIDTH) + 'x' + str(HEIGHT) + ".rknn"
|
||||
rknn = RKNN()
|
||||
rknn.config(mean_values=MEAN_VALUES,
|
||||
std_values=STD_VALUES,
|
||||
quant_img_RGB2BGR=QUANT_IMG_RGB2BGR,
|
||||
quantized_dtype=QUANTIZED_DTYPE,
|
||||
quantized_algorithm=QUANTIZED_ALGORITHM,
|
||||
quantized_method=QUANTIZED_METHOD,
|
||||
float_dtype=FLOAT_DTYPE,
|
||||
optimization_level=OPTIMIZATION_LEVEL,
|
||||
target_platform=TARGET_PLATFORM,
|
||||
custom_string=CUSTOM_STRING,
|
||||
remove_weight=REMOVE_WEIGHT,
|
||||
compress_weight=COMPRESS_WEIGHT,
|
||||
single_core_mode=SINGLE_CORE_MODE,
|
||||
model_pruning=MODEL_PRUNNING,
|
||||
op_target=OP_TARGET,
|
||||
dynamic_input=DYNAMIC_INPUT)
|
||||
|
||||
rknn = RKNN()
|
||||
rknn.config(mean_values=MEAN_VALUES,
|
||||
std_values=STD_VALUES,
|
||||
quant_img_RGB2BGR=QUANT_IMG_RGB2BGR,
|
||||
quantized_dtype=QUANTIZED_DTYPE,
|
||||
quantized_algorithm=QUANTIZED_ALGORITHM,
|
||||
quantized_method=QUANTIZED_METHOD,
|
||||
float_dtype=FLOAT_DTYPE,
|
||||
optimization_level=OPTIMIZATION_LEVEL,
|
||||
target_platform=TARGET_PLATFORM,
|
||||
custom_string=CUSTOM_STRING,
|
||||
remove_weight=REMOVE_WEIGHT,
|
||||
compress_weight=COMPRESS_WEIGHT,
|
||||
single_core_mode=SINGLE_CORE_MODE,
|
||||
model_pruning=MODEL_PRUNNING,
|
||||
op_target=OP_TARGET,
|
||||
dynamic_input=DYNAMIC_INPUT)
|
||||
# if rknn.load_pytorch("./input/" + INPUT_MODEL, [[HEIGHT, WIDTH, 3]]) != 0:
|
||||
if rknn.load_onnx("./input/" + INPUT_MODEL) != 0:
|
||||
print('Error loading model.')
|
||||
exit()
|
||||
|
||||
# if rknn.load_pytorch("./input/" + INPUT_MODEL, [[HEIGHT, WIDTH, 3]]) != 0:
|
||||
if rknn.load_onnx("./input/" + INPUT_MODEL) != 0:
|
||||
print('Error loading model.')
|
||||
exit()
|
||||
if rknn.build(do_quantization=QUANTIZATION, dataset=DATASET) != 0:
|
||||
print('Error building model.')
|
||||
exit()
|
||||
|
||||
if rknn.build(do_quantization=QUANTIZATION, dataset=DATASET) != 0:
|
||||
print('Error building model.')
|
||||
exit()
|
||||
|
||||
if rknn.export_rknn("./output/" + OUTPUT_MODEL) != 0:
|
||||
print('Error exporting rknn model.')
|
||||
exit()
|
||||
if rknn.export_rknn(OUTPUT_MODEL_FILE) != 0:
|
||||
print('Error exporting rknn model.')
|
||||
exit()
|
||||
|
Reference in New Issue
Block a user