mirror of
https://github.com/photoprism/photoprism.git
synced 2025-09-26 21:01:58 +08:00
303 lines
8.8 KiB
Go
303 lines
8.8 KiB
Go
package vision
|
|
|
|
import (
|
|
"fmt"
|
|
"strings"
|
|
"sync"
|
|
|
|
"github.com/photoprism/photoprism/internal/ai/classify"
|
|
"github.com/photoprism/photoprism/internal/ai/face"
|
|
"github.com/photoprism/photoprism/internal/ai/nsfw"
|
|
"github.com/photoprism/photoprism/internal/ai/tensorflow"
|
|
"github.com/photoprism/photoprism/pkg/clean"
|
|
"github.com/photoprism/photoprism/pkg/media/http/scheme"
|
|
)
|
|
|
|
var modelMutex = sync.Mutex{}
|
|
|
|
// Default model version strings.
|
|
var (
|
|
VersionLatest = "latest"
|
|
VersionMobile = "mobile"
|
|
)
|
|
|
|
// Model represents a computer vision model configuration.
|
|
type Model struct {
|
|
Type ModelType `yaml:"Type,omitempty" json:"type,omitempty"`
|
|
Default bool `yaml:"Default,omitempty" json:"default,omitempty"`
|
|
Name string `yaml:"Name,omitempty" json:"name,omitempty"`
|
|
Version string `yaml:"Version,omitempty" json:"version,omitempty"`
|
|
System string `yaml:"System,omitempty" json:"system,omitempty"`
|
|
Prompt string `yaml:"Prompt,omitempty" json:"prompt,omitempty"`
|
|
Resolution int `yaml:"Resolution,omitempty" json:"resolution,omitempty"`
|
|
Meta *tensorflow.ModelInfo `yaml:"Meta,omitempty" json:"meta,omitempty"`
|
|
Service Service `yaml:"Service,omitempty" json:"Service,omitempty"`
|
|
Path string `yaml:"Path,omitempty" json:"-"`
|
|
Disabled bool `yaml:"Disabled,omitempty" json:"disabled,omitempty"`
|
|
classifyModel *classify.Model
|
|
faceModel *face.Model
|
|
nsfwModel *nsfw.Model
|
|
}
|
|
|
|
// Models represents a set of computer vision models.
|
|
type Models []*Model
|
|
|
|
// Model returns the parsed and normalized model identifier, name, and version strings.
|
|
func (m *Model) Model() (model, name, version string) {
|
|
// Return empty identifier string if no name was set.
|
|
if m.Name == "" {
|
|
return "", "", clean.TypeLowerDash(m.Version)
|
|
}
|
|
|
|
// Normalize model name.
|
|
name = clean.TypeLowerDash(m.Name)
|
|
|
|
// Split name to check if it contains the version.
|
|
s := strings.SplitN(name, ":", 2)
|
|
|
|
// Return if name contains both model name and version.
|
|
if len(s) == 2 && s[0] != "" && s[1] != "" {
|
|
return name, s[0], s[1]
|
|
}
|
|
|
|
// Normalize model version.
|
|
version = clean.TypeLowerDash(m.Version)
|
|
|
|
// Default to "latest" if no specific version was set.
|
|
if version == "" {
|
|
version = VersionLatest
|
|
}
|
|
|
|
// Create model identifier from model name and version.
|
|
model = strings.Join([]string{s[0], version}, ":")
|
|
|
|
// Return normalized model identifier, name, and version.
|
|
return model, name, version
|
|
}
|
|
|
|
// Endpoint returns the remote service request method and endpoint URL, if any.
|
|
func (m *Model) Endpoint() (uri, method string) {
|
|
if uri, method = m.Service.Endpoint(); uri != "" && method != "" {
|
|
return uri, method
|
|
} else if ServiceUri == "" {
|
|
return "", ""
|
|
} else if serviceType := clean.TypeLowerUnderscore(m.Type); serviceType == "" {
|
|
return "", ""
|
|
} else {
|
|
return fmt.Sprintf("%s/%s", ServiceUri, serviceType), ServiceMethod
|
|
}
|
|
}
|
|
|
|
// EndpointKey returns the access token belonging to the remote service endpoint, if any.
|
|
func (m *Model) EndpointKey() (key string) {
|
|
if key = m.Service.EndpointKey(); key != "" {
|
|
return key
|
|
} else {
|
|
return ServiceKey
|
|
}
|
|
}
|
|
|
|
// EndpointFileScheme returns the endpoint API request file scheme type.
|
|
func (m *Model) EndpointFileScheme() (fileScheme scheme.Type) {
|
|
if fileScheme = m.Service.EndpointFileScheme(); fileScheme != "" {
|
|
return fileScheme
|
|
}
|
|
|
|
return ServiceFileScheme
|
|
}
|
|
|
|
// EndpointRequestFormat returns the endpoint API request format.
|
|
func (m *Model) EndpointRequestFormat() (format ApiFormat) {
|
|
if format = m.Service.EndpointRequestFormat(); format != "" {
|
|
return format
|
|
}
|
|
|
|
return ServiceRequestFormat
|
|
}
|
|
|
|
// EndpointResponseFormat returns the endpoint API response format.
|
|
func (m *Model) EndpointResponseFormat() (format ApiFormat) {
|
|
if format = m.Service.EndpointResponseFormat(); format != "" {
|
|
return format
|
|
}
|
|
|
|
return ServiceResponseFormat
|
|
}
|
|
|
|
// ClassifyModel returns the matching classify model instance, if any.
|
|
func (m *Model) ClassifyModel() *classify.Model {
|
|
// Use mutex to prevent models from being loaded and
|
|
// initialized twice by different indexing workers.
|
|
modelMutex.Lock()
|
|
defer modelMutex.Unlock()
|
|
|
|
// Return the existing model instance if it has already been created.
|
|
if m.classifyModel != nil {
|
|
return m.classifyModel
|
|
}
|
|
|
|
switch m.Name {
|
|
case "":
|
|
log.Warnf("vision: missing name, model instance cannot be created")
|
|
return nil
|
|
case NasnetModel.Name, "nasnet":
|
|
// Load and initialize the Nasnet image classification model.
|
|
if model := classify.NewNasnet(GetModelsPath(), m.Disabled); model == nil {
|
|
return nil
|
|
} else if err := model.Init(); err != nil {
|
|
log.Errorf("vision: %s (init nasnet model)", err)
|
|
return nil
|
|
} else {
|
|
m.classifyModel = model
|
|
}
|
|
default:
|
|
// Set model path from model name if no path is configured.
|
|
if m.Path == "" {
|
|
m.Path = clean.Path(clean.TypeLowerUnderscore(m.Name))
|
|
}
|
|
|
|
if m.Meta == nil {
|
|
m.Meta = &tensorflow.ModelInfo{}
|
|
}
|
|
|
|
// Set default thumbnail resolution if no tags are configured.
|
|
if m.Resolution <= 0 {
|
|
m.Resolution = DefaultResolution
|
|
}
|
|
|
|
if m.Meta.Input == nil {
|
|
m.Meta.Input = new(tensorflow.PhotoInput)
|
|
}
|
|
|
|
m.Meta.Input.SetResolution(m.Resolution)
|
|
|
|
// Try to load custom model based on the configuration values.
|
|
if model := classify.NewModel(GetModelsPath(), m.Path, GetNasnetModelPath(), m.Meta, m.Disabled); model == nil {
|
|
return nil
|
|
} else if err := model.Init(); err != nil {
|
|
log.Errorf("vision: %s (init %s)", err, m.Path)
|
|
return nil
|
|
} else {
|
|
m.classifyModel = model
|
|
}
|
|
}
|
|
|
|
return m.classifyModel
|
|
}
|
|
|
|
// FaceModel returns the matching face model instance, if any.
|
|
func (m *Model) FaceModel() *face.Model {
|
|
// Use mutex to prevent models from being loaded and
|
|
// initialized twice by different indexing workers.
|
|
modelMutex.Lock()
|
|
defer modelMutex.Unlock()
|
|
|
|
// Return the existing model instance if it has already been created.
|
|
if m.faceModel != nil {
|
|
return m.faceModel
|
|
}
|
|
|
|
switch m.Name {
|
|
case "":
|
|
log.Warnf("vision: missing name, model instance cannot be created")
|
|
return nil
|
|
case FacenetModel.Name, "facenet":
|
|
// Load and initialize the Nasnet image classification model.
|
|
if model := face.NewModel(GetFacenetModelPath(), GetCachePath(), m.Resolution, m.Meta, m.Disabled); model == nil {
|
|
return nil
|
|
} else if err := model.Init(); err != nil {
|
|
log.Errorf("vision: %s (init %s)", err, m.Path)
|
|
return nil
|
|
} else {
|
|
m.faceModel = model
|
|
}
|
|
default:
|
|
// Set model path from model name if no path is configured.
|
|
if m.Path == "" {
|
|
m.Path = clean.Path(clean.TypeLowerUnderscore(m.Name))
|
|
}
|
|
|
|
// Set default thumbnail resolution if no tags are configured.
|
|
if m.Resolution <= 0 {
|
|
m.Resolution = DefaultResolution
|
|
}
|
|
|
|
if m.Meta == nil {
|
|
m.Meta = &tensorflow.ModelInfo{}
|
|
}
|
|
|
|
// Try to load custom model based on the configuration values.
|
|
if model := face.NewModel(GetModelPath(m.Path), GetCachePath(), m.Resolution, m.Meta, m.Disabled); model == nil {
|
|
return nil
|
|
} else if err := model.Init(); err != nil {
|
|
log.Errorf("vision: %s (init %s)", err, m.Path)
|
|
return nil
|
|
} else {
|
|
m.faceModel = model
|
|
}
|
|
}
|
|
|
|
return m.faceModel
|
|
}
|
|
|
|
// NsfwModel returns the matching nsfw model instance, if any.
|
|
func (m *Model) NsfwModel() *nsfw.Model {
|
|
// Use mutex to prevent models from being loaded and
|
|
// initialized twice by different indexing workers.
|
|
modelMutex.Lock()
|
|
defer modelMutex.Unlock()
|
|
|
|
// Return the existing model instance if it has already been created.
|
|
if m.nsfwModel != nil {
|
|
return m.nsfwModel
|
|
}
|
|
|
|
switch m.Name {
|
|
case "":
|
|
log.Warnf("vision: missing name, model instance cannot be created")
|
|
return nil
|
|
case NsfwModel.Name, "nsfw":
|
|
// Load and initialize the Nasnet image classification model.
|
|
if model := nsfw.NewModel(GetNsfwModelPath(), NsfwModel.Meta, m.Disabled); model == nil {
|
|
return nil
|
|
} else if err := model.Init(); err != nil {
|
|
log.Errorf("vision: %s (init %s)", err, m.Path)
|
|
return nil
|
|
} else {
|
|
m.nsfwModel = model
|
|
}
|
|
default:
|
|
// Set model path from model name if no path is configured.
|
|
if m.Path == "" {
|
|
m.Path = clean.Path(clean.TypeLowerUnderscore(m.Name))
|
|
}
|
|
|
|
// Set default thumbnail resolution if no tags are configured.
|
|
if m.Resolution <= 0 {
|
|
m.Resolution = DefaultResolution
|
|
}
|
|
|
|
if m.Meta.Input == nil {
|
|
m.Meta.Input = new(tensorflow.PhotoInput)
|
|
}
|
|
|
|
m.Meta.Input.SetResolution(m.Resolution)
|
|
|
|
if m.Meta == nil {
|
|
m.Meta = &tensorflow.ModelInfo{}
|
|
}
|
|
|
|
// Try to load custom model based on the configuration values.
|
|
if model := nsfw.NewModel(GetModelPath(m.Path), m.Meta, m.Disabled); model == nil {
|
|
return nil
|
|
} else if err := model.Init(); err != nil {
|
|
log.Errorf("vision: %s (init %s)", err, m.Path)
|
|
return nil
|
|
} else {
|
|
m.nsfwModel = model
|
|
}
|
|
}
|
|
|
|
return m.nsfwModel
|
|
}
|