clone from danieldin95

This commit is contained in:
sicheng
2022-07-29 23:38:54 +08:00
commit ac4f79bbf4
1931 changed files with 568263 additions and 0 deletions

202
vendor/github.com/shadowsocks/go-shadowsocks2/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -0,0 +1,109 @@
package core
import (
"crypto/md5"
"errors"
"net"
"sort"
"strings"
"github.com/shadowsocks/go-shadowsocks2/shadowaead"
)
type Cipher interface {
StreamConnCipher
PacketConnCipher
}
type StreamConnCipher interface {
StreamConn(net.Conn) net.Conn
}
type PacketConnCipher interface {
PacketConn(net.PacketConn) net.PacketConn
}
// ErrCipherNotSupported occurs when a cipher is not supported (likely because of security concerns).
var ErrCipherNotSupported = errors.New("cipher not supported")
const (
aeadAes128Gcm = "AEAD_AES_128_GCM"
aeadAes256Gcm = "AEAD_AES_256_GCM"
aeadChacha20Poly1305 = "AEAD_CHACHA20_POLY1305"
)
// List of AEAD ciphers: key size in bytes and constructor
var aeadList = map[string]struct {
KeySize int
New func([]byte) (shadowaead.Cipher, error)
}{
aeadAes128Gcm: {16, shadowaead.AESGCM},
aeadAes256Gcm: {32, shadowaead.AESGCM},
aeadChacha20Poly1305: {32, shadowaead.Chacha20Poly1305},
}
// ListCipher returns a list of available cipher names sorted alphabetically.
func ListCipher() []string {
var l []string
for k := range aeadList {
l = append(l, k)
}
sort.Strings(l)
return l
}
// PickCipher returns a Cipher of the given name. Derive key from password if given key is empty.
func PickCipher(name string, key []byte, password string) (Cipher, error) {
name = strings.ToUpper(name)
switch name {
case "DUMMY":
return &dummy{}, nil
case "CHACHA20-IETF-POLY1305":
name = aeadChacha20Poly1305
case "AES-128-GCM":
name = aeadAes128Gcm
case "AES-256-GCM":
name = aeadAes256Gcm
}
if choice, ok := aeadList[name]; ok {
if len(key) == 0 {
key = kdf(password, choice.KeySize)
}
if len(key) != choice.KeySize {
return nil, shadowaead.KeySizeError(choice.KeySize)
}
aead, err := choice.New(key)
return &aeadCipher{aead}, err
}
return nil, ErrCipherNotSupported
}
type aeadCipher struct{ shadowaead.Cipher }
func (aead *aeadCipher) StreamConn(c net.Conn) net.Conn { return shadowaead.NewConn(c, aead) }
func (aead *aeadCipher) PacketConn(c net.PacketConn) net.PacketConn {
return shadowaead.NewPacketConn(c, aead)
}
// dummy cipher does not encrypt
type dummy struct{}
func (dummy) StreamConn(c net.Conn) net.Conn { return c }
func (dummy) PacketConn(c net.PacketConn) net.PacketConn { return c }
// key-derivation function from original Shadowsocks
func kdf(password string, keyLen int) []byte {
var b, prev []byte
h := md5.New()
for len(b) < keyLen {
h.Write(prev)
h.Write([]byte(password))
b = h.Sum(b)
prev = b[len(b)-h.Size():]
h.Reset()
}
return b[:keyLen]
}

View File

@@ -0,0 +1,2 @@
// Package core implements essential parts of Shadowsocks
package core

View File

@@ -0,0 +1,8 @@
package core
import "net"
func ListenPacket(network, address string, ciph PacketConnCipher) (net.PacketConn, error) {
c, err := net.ListenPacket(network, address)
return ciph.PacketConn(c), err
}

View File

@@ -0,0 +1,23 @@
package core
import "net"
type listener struct {
net.Listener
StreamConnCipher
}
func Listen(network, address string, ciph StreamConnCipher) (net.Listener, error) {
l, err := net.Listen(network, address)
return &listener{l, ciph}, err
}
func (l *listener) Accept() (net.Conn, error) {
c, err := l.Listener.Accept()
return l.StreamConn(c), err
}
func Dial(network, address string, ciph StreamConnCipher) (net.Conn, error) {
c, err := net.Dial(network, address)
return ciph.StreamConn(c), err
}

View File

@@ -0,0 +1,92 @@
package internal
import (
"hash/fnv"
"sync"
"github.com/riobard/go-bloom"
)
// simply use Double FNV here as our Bloom Filter hash
func doubleFNV(b []byte) (uint64, uint64) {
hx := fnv.New64()
hx.Write(b)
x := hx.Sum64()
hy := fnv.New64a()
hy.Write(b)
y := hy.Sum64()
return x, y
}
type BloomRing struct {
slotCapacity int
slotPosition int
slotCount int
entryCounter int
slots []bloom.Filter
mutex sync.RWMutex
}
func NewBloomRing(slot, capacity int, falsePositiveRate float64) *BloomRing {
// Calculate entries for each slot
r := &BloomRing{
slotCapacity: capacity / slot,
slotCount: slot,
slots: make([]bloom.Filter, slot),
}
for i := 0; i < slot; i++ {
r.slots[i] = bloom.New(r.slotCapacity, falsePositiveRate, doubleFNV)
}
return r
}
func (r *BloomRing) Add(b []byte) {
if r == nil {
return
}
r.mutex.Lock()
defer r.mutex.Unlock()
r.add(b)
}
func (r *BloomRing) add(b []byte) {
slot := r.slots[r.slotPosition]
if r.entryCounter > r.slotCapacity {
// Move to next slot and reset
r.slotPosition = (r.slotPosition + 1) % r.slotCount
slot = r.slots[r.slotPosition]
slot.Reset()
r.entryCounter = 0
}
r.entryCounter++
slot.Add(b)
}
func (r *BloomRing) Test(b []byte) bool {
if r == nil {
return false
}
r.mutex.RLock()
defer r.mutex.RUnlock()
test := r.test(b)
return test
}
func (r *BloomRing) test(b []byte) bool {
for _, s := range r.slots {
if s.Test(b) {
return true
}
}
return false
}
func (r *BloomRing) Check(b []byte) bool {
r.mutex.Lock()
defer r.mutex.Unlock()
if r.Test(b) {
return true
}
r.Add(b)
return false
}

View File

@@ -0,0 +1,85 @@
package internal
import (
"fmt"
"os"
"strconv"
"sync"
)
// Those suggest value are all set according to
// https://github.com/shadowsocks/shadowsocks-org/issues/44#issuecomment-281021054
// Due to this package contains various internal implementation so const named with DefaultBR prefix
const (
DefaultSFCapacity = 1e6
// FalsePositiveRate
DefaultSFFPR = 1e-6
DefaultSFSlot = 10
)
const EnvironmentPrefix = "SHADOWSOCKS_"
// A shared instance used for checking salt repeat
var saltfilter *BloomRing
// Used to initialize the saltfilter singleton only once.
var initSaltfilterOnce sync.Once
// GetSaltFilterSingleton returns the BloomRing singleton,
// initializing it on first call.
func getSaltFilterSingleton() *BloomRing {
initSaltfilterOnce.Do(func() {
var (
finalCapacity = DefaultSFCapacity
finalFPR = DefaultSFFPR
finalSlot = float64(DefaultSFSlot)
)
for _, opt := range []struct {
ENVName string
Target *float64
}{
{
ENVName: "CAPACITY",
Target: &finalCapacity,
},
{
ENVName: "FPR",
Target: &finalFPR,
},
{
ENVName: "SLOT",
Target: &finalSlot,
},
} {
envKey := EnvironmentPrefix + "SF_" + opt.ENVName
env := os.Getenv(envKey)
if env != "" {
p, err := strconv.ParseFloat(env, 64)
if err != nil {
panic(fmt.Sprintf("Invalid envrionment `%s` setting in saltfilter: %s", envKey, env))
}
*opt.Target = p
}
}
// Support disable saltfilter by given a negative capacity
if finalCapacity <= 0 {
return
}
saltfilter = NewBloomRing(int(finalSlot), int(finalCapacity), finalFPR)
})
return saltfilter
}
// TestSalt returns true if salt is repeated
func TestSalt(b []byte) bool {
return getSaltFilterSingleton().Test(b)
}
// AddSalt salt to filter
func AddSalt(b []byte) {
getSaltFilterSingleton().Add(b)
}
func CheckSalt(b []byte) bool {
return getSaltFilterSingleton().Test(b)
}

View File

@@ -0,0 +1,55 @@
package nfutil
import (
"net"
"syscall"
"unsafe"
)
// Get the original destination of a TCP connection redirected by Netfilter.
func GetOrigDst(c *net.TCPConn, ipv6 bool) (*net.TCPAddr, error) {
rc, err := c.SyscallConn()
if err != nil {
return nil, err
}
var addr *net.TCPAddr
rc.Control(func(fd uintptr) {
if ipv6 {
addr, err = ipv6_getorigdst(fd)
} else {
addr, err = getorigdst(fd)
}
})
return addr, err
}
// Call getorigdst() from linux/net/ipv4/netfilter/nf_conntrack_l3proto_ipv4.c
func getorigdst(fd uintptr) (*net.TCPAddr, error) {
const _SO_ORIGINAL_DST = 80 // from linux/include/uapi/linux/netfilter_ipv4.h
var raw syscall.RawSockaddrInet4
siz := unsafe.Sizeof(raw)
if err := socketcall(GETSOCKOPT, fd, syscall.IPPROTO_IP, _SO_ORIGINAL_DST, uintptr(unsafe.Pointer(&raw)), uintptr(unsafe.Pointer(&siz)), 0); err != nil {
return nil, err
}
var addr net.TCPAddr
addr.IP = raw.Addr[:]
port := (*[2]byte)(unsafe.Pointer(&raw.Port)) // raw.Port is big-endian
addr.Port = int(port[0])<<8 | int(port[1])
return &addr, nil
}
// Call ipv6_getorigdst() from linux/net/ipv6/netfilter/nf_conntrack_l3proto_ipv6.c
// NOTE: I haven't tried yet but it should work since Linux 3.8.
func ipv6_getorigdst(fd uintptr) (*net.TCPAddr, error) {
const _IP6T_SO_ORIGINAL_DST = 80 // from linux/include/uapi/linux/netfilter_ipv6/ip6_tables.h
var raw syscall.RawSockaddrInet6
siz := unsafe.Sizeof(raw)
if err := socketcall(GETSOCKOPT, fd, syscall.IPPROTO_IPV6, _IP6T_SO_ORIGINAL_DST, uintptr(unsafe.Pointer(&raw)), uintptr(unsafe.Pointer(&siz)), 0); err != nil {
return nil, err
}
var addr net.TCPAddr
addr.IP = raw.Addr[:]
port := (*[2]byte)(unsafe.Pointer(&raw.Port)) // raw.Port is big-endian
addr.Port = int(port[0])<<8 | int(port[1])
return &addr, nil
}

View File

@@ -0,0 +1,17 @@
package nfutil
import (
"syscall"
"unsafe"
)
const GETSOCKOPT = 15 // https://golang.org/src/syscall/syscall_linux_386.go#L183
func socketcall(call, a0, a1, a2, a3, a4, a5 uintptr) error {
var a [6]uintptr
a[0], a[1], a[2], a[3], a[4], a[5] = a0, a1, a2, a3, a4, a5
if _, _, errno := syscall.Syscall6(syscall.SYS_SOCKETCALL, call, uintptr(unsafe.Pointer(&a)), 0, 0, 0, 0); errno != 0 {
return errno
}
return nil
}

View File

@@ -0,0 +1,14 @@
// +build linux,!386
package nfutil
import "syscall"
const GETSOCKOPT = syscall.SYS_GETSOCKOPT
func socketcall(call, a0, a1, a2, a3, a4, a5 uintptr) error {
if _, _, errno := syscall.Syscall6(call, a0, a1, a2, a3, a4, a5); errno != 0 {
return errno
}
return nil
}

View File

@@ -0,0 +1,51 @@
package pfutil
import (
"net"
"syscall"
"unsafe"
)
func NatLookup(c *net.TCPConn) (*net.TCPAddr, error) {
const (
PF_INOUT = 0
PF_IN = 1
PF_OUT = 2
IOC_OUT = 0x40000000
IOC_IN = 0x80000000
IOC_INOUT = IOC_IN | IOC_OUT
IOCPARM_MASK = 0x1FFF
LEN = 4*16 + 4*4 + 4*1
// #define _IOC(inout,group,num,len) (inout | ((len & IOCPARM_MASK) << 16) | ((group) << 8) | (num))
// #define _IOWR(g,n,t) _IOC(IOC_INOUT, (g), (n), sizeof(t))
// #define DIOCNATLOOK _IOWR('D', 23, struct pfioc_natlook)
DIOCNATLOOK = IOC_INOUT | ((LEN & IOCPARM_MASK) << 16) | ('D' << 8) | 23
)
fd, err := syscall.Open("/dev/pf", 0, syscall.O_RDONLY)
if err != nil {
return nil, err
}
defer syscall.Close(fd)
nl := struct { // struct pfioc_natlook
saddr, daddr, rsaddr, rdaddr [16]byte
sxport, dxport, rsxport, rdxport [4]byte
af, proto, protoVariant, direction uint8
}{
af: syscall.AF_INET,
proto: syscall.IPPROTO_TCP,
direction: PF_OUT,
}
saddr := c.RemoteAddr().(*net.TCPAddr)
daddr := c.LocalAddr().(*net.TCPAddr)
copy(nl.saddr[:], saddr.IP)
copy(nl.daddr[:], daddr.IP)
nl.sxport[0], nl.sxport[1] = byte(saddr.Port>>8), byte(saddr.Port)
nl.dxport[0], nl.dxport[1] = byte(daddr.Port>>8), byte(daddr.Port)
if _, _, errno := syscall.Syscall(syscall.SYS_IOCTL, uintptr(fd), DIOCNATLOOK, uintptr(unsafe.Pointer(&nl))); errno != 0 {
return nil, errno
}
var addr net.TCPAddr
addr.IP = nl.rdaddr[:4]
addr.Port = int(nl.rdxport[0])<<8 | int(nl.rdxport[1])
return &addr, nil
}

View File

@@ -0,0 +1,87 @@
package shadowaead
import (
"crypto/aes"
"crypto/cipher"
"crypto/sha1"
"errors"
"io"
"strconv"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/crypto/hkdf"
)
// ErrRepeatedSalt means detected a reused salt
var ErrRepeatedSalt = errors.New("repeated salt detected")
type Cipher interface {
KeySize() int
SaltSize() int
Encrypter(salt []byte) (cipher.AEAD, error)
Decrypter(salt []byte) (cipher.AEAD, error)
}
type KeySizeError int
func (e KeySizeError) Error() string {
return "key size error: need " + strconv.Itoa(int(e)) + " bytes"
}
func hkdfSHA1(secret, salt, info, outkey []byte) {
r := hkdf.New(sha1.New, secret, salt, info)
if _, err := io.ReadFull(r, outkey); err != nil {
panic(err) // should never happen
}
}
type metaCipher struct {
psk []byte
makeAEAD func(key []byte) (cipher.AEAD, error)
}
func (a *metaCipher) KeySize() int { return len(a.psk) }
func (a *metaCipher) SaltSize() int {
if ks := a.KeySize(); ks > 16 {
return ks
}
return 16
}
func (a *metaCipher) Encrypter(salt []byte) (cipher.AEAD, error) {
subkey := make([]byte, a.KeySize())
hkdfSHA1(a.psk, salt, []byte("ss-subkey"), subkey)
return a.makeAEAD(subkey)
}
func (a *metaCipher) Decrypter(salt []byte) (cipher.AEAD, error) {
subkey := make([]byte, a.KeySize())
hkdfSHA1(a.psk, salt, []byte("ss-subkey"), subkey)
return a.makeAEAD(subkey)
}
func aesGCM(key []byte) (cipher.AEAD, error) {
blk, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
return cipher.NewGCM(blk)
}
// AESGCM creates a new Cipher with a pre-shared key. len(psk) must be
// one of 16, 24, or 32 to select AES-128/196/256-GCM.
func AESGCM(psk []byte) (Cipher, error) {
switch l := len(psk); l {
case 16, 24, 32: // AES 128/196/256
default:
return nil, aes.KeySizeError(l)
}
return &metaCipher{psk: psk, makeAEAD: aesGCM}, nil
}
// Chacha20Poly1305 creates a new Cipher with a pre-shared key. len(psk)
// must be 32.
func Chacha20Poly1305(psk []byte) (Cipher, error) {
if len(psk) != chacha20poly1305.KeySize {
return nil, KeySizeError(chacha20poly1305.KeySize)
}
return &metaCipher{psk: psk, makeAEAD: chacha20poly1305.New}, nil
}

View File

@@ -0,0 +1,35 @@
/*
Package shadowaead implements a simple AEAD-protected secure protocol.
In general, there are two types of connections: stream-oriented and packet-oriented.
Stream-oriented connections (e.g. TCP) assume reliable and orderly delivery of bytes.
Packet-oriented connections (e.g. UDP) assume unreliable and out-of-order delivery of packets,
where each packet is either delivered intact or lost.
An encrypted stream starts with a random salt to derive a session key, followed by any number of
encrypted records. Each encrypted record has the following structure:
[encrypted payload length]
[payload length tag]
[encrypted payload]
[payload tag]
Payload length is 2-byte unsigned big-endian integer capped at 0x3FFF (16383).
The higher 2 bits are reserved and must be set to zero. The first AEAD encrypt/decrypt
operation uses a counting nonce starting from 0. After each encrypt/decrypt operation,
the nonce is incremented by one as if it were an unsigned little-endian integer.
Each encrypted packet transmitted on a packet-oriented connection has the following structure:
[random salt]
[encrypted payload]
[payload tag]
The salt is used to derive a subkey to initiate an AEAD. Packets are encrypted/decrypted independently
using zero nonce.
In both stream-oriented and packet-oriented connections, length of nonce and tag varies
depending on which AEAD is used. Salt should be at least 16-byte long.
*/
package shadowaead

View File

@@ -0,0 +1,103 @@
package shadowaead
import (
"crypto/rand"
"errors"
"io"
"net"
"sync"
"github.com/shadowsocks/go-shadowsocks2/internal"
)
// ErrShortPacket means that the packet is too short for a valid encrypted packet.
var ErrShortPacket = errors.New("short packet")
var _zerononce [128]byte // read-only. 128 bytes is more than enough.
// Pack encrypts plaintext using Cipher with a randomly generated salt and
// returns a slice of dst containing the encrypted packet and any error occurred.
// Ensure len(dst) >= ciph.SaltSize() + len(plaintext) + aead.Overhead().
func Pack(dst, plaintext []byte, ciph Cipher) ([]byte, error) {
saltSize := ciph.SaltSize()
salt := dst[:saltSize]
if _, err := io.ReadFull(rand.Reader, salt); err != nil {
return nil, err
}
aead, err := ciph.Encrypter(salt)
if err != nil {
return nil, err
}
internal.AddSalt(salt)
if len(dst) < saltSize+len(plaintext)+aead.Overhead() {
return nil, io.ErrShortBuffer
}
b := aead.Seal(dst[saltSize:saltSize], _zerononce[:aead.NonceSize()], plaintext, nil)
return dst[:saltSize+len(b)], nil
}
// Unpack decrypts pkt using Cipher and returns a slice of dst containing the decrypted payload and any error occurred.
// Ensure len(dst) >= len(pkt) - aead.SaltSize() - aead.Overhead().
func Unpack(dst, pkt []byte, ciph Cipher) ([]byte, error) {
saltSize := ciph.SaltSize()
if len(pkt) < saltSize {
return nil, ErrShortPacket
}
salt := pkt[:saltSize]
aead, err := ciph.Decrypter(salt)
if err != nil {
return nil, err
}
if internal.CheckSalt(salt) {
return nil, ErrRepeatedSalt
}
if len(pkt) < saltSize+aead.Overhead() {
return nil, ErrShortPacket
}
if saltSize+len(dst)+aead.Overhead() < len(pkt) {
return nil, io.ErrShortBuffer
}
b, err := aead.Open(dst[:0], _zerononce[:aead.NonceSize()], pkt[saltSize:], nil)
return b, err
}
type packetConn struct {
net.PacketConn
Cipher
sync.Mutex
buf []byte // write lock
}
// NewPacketConn wraps a net.PacketConn with cipher
func NewPacketConn(c net.PacketConn, ciph Cipher) net.PacketConn {
const maxPacketSize = 64 * 1024
return &packetConn{PacketConn: c, Cipher: ciph, buf: make([]byte, maxPacketSize)}
}
// WriteTo encrypts b and write to addr using the embedded PacketConn.
func (c *packetConn) WriteTo(b []byte, addr net.Addr) (int, error) {
c.Lock()
defer c.Unlock()
buf, err := Pack(c.buf, b, c)
if err != nil {
return 0, err
}
_, err = c.PacketConn.WriteTo(buf, addr)
return len(b), err
}
// ReadFrom reads from the embedded PacketConn and decrypts into b.
func (c *packetConn) ReadFrom(b []byte) (int, net.Addr, error) {
n, addr, err := c.PacketConn.ReadFrom(b)
if err != nil {
return n, addr, err
}
bb, err := Unpack(b[c.Cipher.SaltSize():], b[:n], c)
if err != nil {
return n, addr, err
}
copy(b, bb)
return len(bb), addr, err
}

View File

@@ -0,0 +1,276 @@
package shadowaead
import (
"bytes"
"crypto/cipher"
"crypto/rand"
"io"
"net"
"github.com/shadowsocks/go-shadowsocks2/internal"
)
// payloadSizeMask is the maximum size of payload in bytes.
const payloadSizeMask = 0x3FFF // 16*1024 - 1
type writer struct {
io.Writer
cipher.AEAD
nonce []byte
buf []byte
}
// NewWriter wraps an io.Writer with AEAD encryption.
func NewWriter(w io.Writer, aead cipher.AEAD) io.Writer { return newWriter(w, aead) }
func newWriter(w io.Writer, aead cipher.AEAD) *writer {
return &writer{
Writer: w,
AEAD: aead,
buf: make([]byte, 2+aead.Overhead()+payloadSizeMask+aead.Overhead()),
nonce: make([]byte, aead.NonceSize()),
}
}
// Write encrypts b and writes to the embedded io.Writer.
func (w *writer) Write(b []byte) (int, error) {
n, err := w.ReadFrom(bytes.NewBuffer(b))
return int(n), err
}
// ReadFrom reads from the given io.Reader until EOF or error, encrypts and
// writes to the embedded io.Writer. Returns number of bytes read from r and
// any error encountered.
func (w *writer) ReadFrom(r io.Reader) (n int64, err error) {
for {
buf := w.buf
payloadBuf := buf[2+w.Overhead() : 2+w.Overhead()+payloadSizeMask]
nr, er := r.Read(payloadBuf)
if nr > 0 {
n += int64(nr)
buf = buf[:2+w.Overhead()+nr+w.Overhead()]
payloadBuf = payloadBuf[:nr]
buf[0], buf[1] = byte(nr>>8), byte(nr) // big-endian payload size
w.Seal(buf[:0], w.nonce, buf[:2], nil)
increment(w.nonce)
w.Seal(payloadBuf[:0], w.nonce, payloadBuf, nil)
increment(w.nonce)
_, ew := w.Writer.Write(buf)
if ew != nil {
err = ew
break
}
}
if er != nil {
if er != io.EOF { // ignore EOF as per io.ReaderFrom contract
err = er
}
break
}
}
return n, err
}
type reader struct {
io.Reader
cipher.AEAD
nonce []byte
buf []byte
leftover []byte
}
// NewReader wraps an io.Reader with AEAD decryption.
func NewReader(r io.Reader, aead cipher.AEAD) io.Reader { return newReader(r, aead) }
func newReader(r io.Reader, aead cipher.AEAD) *reader {
return &reader{
Reader: r,
AEAD: aead,
buf: make([]byte, payloadSizeMask+aead.Overhead()),
nonce: make([]byte, aead.NonceSize()),
}
}
// read and decrypt a record into the internal buffer. Return decrypted payload length and any error encountered.
func (r *reader) read() (int, error) {
// decrypt payload size
buf := r.buf[:2+r.Overhead()]
_, err := io.ReadFull(r.Reader, buf)
if err != nil {
return 0, err
}
_, err = r.Open(buf[:0], r.nonce, buf, nil)
increment(r.nonce)
if err != nil {
return 0, err
}
size := (int(buf[0])<<8 + int(buf[1])) & payloadSizeMask
// decrypt payload
buf = r.buf[:size+r.Overhead()]
_, err = io.ReadFull(r.Reader, buf)
if err != nil {
return 0, err
}
_, err = r.Open(buf[:0], r.nonce, buf, nil)
increment(r.nonce)
if err != nil {
return 0, err
}
return size, nil
}
// Read reads from the embedded io.Reader, decrypts and writes to b.
func (r *reader) Read(b []byte) (int, error) {
// copy decrypted bytes (if any) from previous record first
if len(r.leftover) > 0 {
n := copy(b, r.leftover)
r.leftover = r.leftover[n:]
return n, nil
}
n, err := r.read()
m := copy(b, r.buf[:n])
if m < n { // insufficient len(b), keep leftover for next read
r.leftover = r.buf[m:n]
}
return m, err
}
// WriteTo reads from the embedded io.Reader, decrypts and writes to w until
// there's no more data to write or when an error occurs. Return number of
// bytes written to w and any error encountered.
func (r *reader) WriteTo(w io.Writer) (n int64, err error) {
// write decrypted bytes left over from previous record
for len(r.leftover) > 0 {
nw, ew := w.Write(r.leftover)
r.leftover = r.leftover[nw:]
n += int64(nw)
if ew != nil {
return n, ew
}
}
for {
nr, er := r.read()
if nr > 0 {
nw, ew := w.Write(r.buf[:nr])
n += int64(nw)
if ew != nil {
err = ew
break
}
}
if er != nil {
if er != io.EOF { // ignore EOF as per io.Copy contract (using src.WriteTo shortcut)
err = er
}
break
}
}
return n, err
}
// increment little-endian encoded unsigned integer b. Wrap around on overflow.
func increment(b []byte) {
for i := range b {
b[i]++
if b[i] != 0 {
return
}
}
}
type streamConn struct {
net.Conn
Cipher
r *reader
w *writer
}
func (c *streamConn) initReader() error {
salt := make([]byte, c.SaltSize())
if _, err := io.ReadFull(c.Conn, salt); err != nil {
return err
}
aead, err := c.Decrypter(salt)
if err != nil {
return err
}
if internal.CheckSalt(salt) {
return ErrRepeatedSalt
}
c.r = newReader(c.Conn, aead)
return nil
}
func (c *streamConn) Read(b []byte) (int, error) {
if c.r == nil {
if err := c.initReader(); err != nil {
return 0, err
}
}
return c.r.Read(b)
}
func (c *streamConn) WriteTo(w io.Writer) (int64, error) {
if c.r == nil {
if err := c.initReader(); err != nil {
return 0, err
}
}
return c.r.WriteTo(w)
}
func (c *streamConn) initWriter() error {
salt := make([]byte, c.SaltSize())
if _, err := io.ReadFull(rand.Reader, salt); err != nil {
return err
}
aead, err := c.Encrypter(salt)
if err != nil {
return err
}
_, err = c.Conn.Write(salt)
if err != nil {
return err
}
internal.AddSalt(salt)
c.w = newWriter(c.Conn, aead)
return nil
}
func (c *streamConn) Write(b []byte) (int, error) {
if c.w == nil {
if err := c.initWriter(); err != nil {
return 0, err
}
}
return c.w.Write(b)
}
func (c *streamConn) ReadFrom(r io.Reader) (int64, error) {
if c.w == nil {
if err := c.initWriter(); err != nil {
return 0, err
}
}
return c.w.ReadFrom(r)
}
// NewConn wraps a stream-oriented net.Conn with cipher.
func NewConn(c net.Conn, ciph Cipher) net.Conn { return &streamConn{Conn: c, Cipher: ciph} }

View File

@@ -0,0 +1,214 @@
// Package socks implements essential parts of SOCKS protocol.
package socks
import (
"io"
"net"
"strconv"
)
// UDPEnabled is the toggle for UDP support
var UDPEnabled = false
// SOCKS request commands as defined in RFC 1928 section 4.
const (
CmdConnect = 1
CmdBind = 2
CmdUDPAssociate = 3
)
// SOCKS address types as defined in RFC 1928 section 5.
const (
AtypIPv4 = 1
AtypDomainName = 3
AtypIPv6 = 4
)
// Error represents a SOCKS error
type Error byte
func (err Error) Error() string {
return "SOCKS error: " + strconv.Itoa(int(err))
}
// SOCKS errors as defined in RFC 1928 section 6.
const (
ErrGeneralFailure = Error(1)
ErrConnectionNotAllowed = Error(2)
ErrNetworkUnreachable = Error(3)
ErrHostUnreachable = Error(4)
ErrConnectionRefused = Error(5)
ErrTTLExpired = Error(6)
ErrCommandNotSupported = Error(7)
ErrAddressNotSupported = Error(8)
InfoUDPAssociate = Error(9)
)
// MaxAddrLen is the maximum size of SOCKS address in bytes.
const MaxAddrLen = 1 + 1 + 255 + 2
// Addr represents a SOCKS address as defined in RFC 1928 section 5.
type Addr []byte
// String serializes SOCKS address a to string form.
func (a Addr) String() string {
var host, port string
switch a[0] { // address type
case AtypDomainName:
host = string(a[2 : 2+int(a[1])])
port = strconv.Itoa((int(a[2+int(a[1])]) << 8) | int(a[2+int(a[1])+1]))
case AtypIPv4:
host = net.IP(a[1 : 1+net.IPv4len]).String()
port = strconv.Itoa((int(a[1+net.IPv4len]) << 8) | int(a[1+net.IPv4len+1]))
case AtypIPv6:
host = net.IP(a[1 : 1+net.IPv6len]).String()
port = strconv.Itoa((int(a[1+net.IPv6len]) << 8) | int(a[1+net.IPv6len+1]))
}
return net.JoinHostPort(host, port)
}
func readAddr(r io.Reader, b []byte) (Addr, error) {
if len(b) < MaxAddrLen {
return nil, io.ErrShortBuffer
}
_, err := io.ReadFull(r, b[:1]) // read 1st byte for address type
if err != nil {
return nil, err
}
switch b[0] {
case AtypDomainName:
_, err = io.ReadFull(r, b[1:2]) // read 2nd byte for domain length
if err != nil {
return nil, err
}
_, err = io.ReadFull(r, b[2:2+int(b[1])+2])
return b[:1+1+int(b[1])+2], err
case AtypIPv4:
_, err = io.ReadFull(r, b[1:1+net.IPv4len+2])
return b[:1+net.IPv4len+2], err
case AtypIPv6:
_, err = io.ReadFull(r, b[1:1+net.IPv6len+2])
return b[:1+net.IPv6len+2], err
}
return nil, ErrAddressNotSupported
}
// ReadAddr reads just enough bytes from r to get a valid Addr.
func ReadAddr(r io.Reader) (Addr, error) {
return readAddr(r, make([]byte, MaxAddrLen))
}
// SplitAddr slices a SOCKS address from beginning of b. Returns nil if failed.
func SplitAddr(b []byte) Addr {
addrLen := 1
if len(b) < addrLen {
return nil
}
switch b[0] {
case AtypDomainName:
if len(b) < 2 {
return nil
}
addrLen = 1 + 1 + int(b[1]) + 2
case AtypIPv4:
addrLen = 1 + net.IPv4len + 2
case AtypIPv6:
addrLen = 1 + net.IPv6len + 2
default:
return nil
}
if len(b) < addrLen {
return nil
}
return b[:addrLen]
}
// ParseAddr parses the address in string s. Returns nil if failed.
func ParseAddr(s string) Addr {
var addr Addr
host, port, err := net.SplitHostPort(s)
if err != nil {
return nil
}
if ip := net.ParseIP(host); ip != nil {
if ip4 := ip.To4(); ip4 != nil {
addr = make([]byte, 1+net.IPv4len+2)
addr[0] = AtypIPv4
copy(addr[1:], ip4)
} else {
addr = make([]byte, 1+net.IPv6len+2)
addr[0] = AtypIPv6
copy(addr[1:], ip)
}
} else {
if len(host) > 255 {
return nil
}
addr = make([]byte, 1+1+len(host)+2)
addr[0] = AtypDomainName
addr[1] = byte(len(host))
copy(addr[2:], host)
}
portnum, err := strconv.ParseUint(port, 10, 16)
if err != nil {
return nil
}
addr[len(addr)-2], addr[len(addr)-1] = byte(portnum>>8), byte(portnum)
return addr
}
// Handshake fast-tracks SOCKS initialization to get target address to connect.
func Handshake(rw io.ReadWriter) (Addr, error) {
// Read RFC 1928 for request and reply structure and sizes.
buf := make([]byte, MaxAddrLen)
// read VER, NMETHODS, METHODS
if _, err := io.ReadFull(rw, buf[:2]); err != nil {
return nil, err
}
nmethods := buf[1]
if _, err := io.ReadFull(rw, buf[:nmethods]); err != nil {
return nil, err
}
// write VER METHOD
if _, err := rw.Write([]byte{5, 0}); err != nil {
return nil, err
}
// read VER CMD RSV ATYP DST.ADDR DST.PORT
if _, err := io.ReadFull(rw, buf[:3]); err != nil {
return nil, err
}
cmd := buf[1]
addr, err := readAddr(rw, buf)
if err != nil {
return nil, err
}
switch cmd {
case CmdConnect:
_, err = rw.Write([]byte{5, 0, 0, 1, 0, 0, 0, 0, 0, 0}) // SOCKS v5, reply succeeded
case CmdUDPAssociate:
if !UDPEnabled {
return nil, ErrCommandNotSupported
}
listenAddr := ParseAddr(rw.(net.Conn).LocalAddr().String())
_, err = rw.Write(append([]byte{5, 0, 0}, listenAddr...)) // SOCKS v5, reply succeeded
if err != nil {
return nil, ErrCommandNotSupported
}
err = InfoUDPAssociate
default:
return nil, ErrCommandNotSupported
}
return addr, err // skip VER, CMD, RSV fields
}