var SIGN_BIT = 0x80; /* Sign bit for a A-law byte. */ var QUANT_MASK = 0xf; /* Quantization field mask. */ var NSEGS = 0x8; /* Number of A-law segments. */ var SEG_SHIFT = 0x4; /* Left shift for segment number. */ var SEG_MASK = 0x70; /* Segment field mask. */ var seg_aend = new Int16Array([0x1F, 0x3F, 0x7F, 0xFF,0x1FF, 0x3FF, 0x7FF, 0xFFF]); var seg_uend = new Int16Array([0x3F, 0x7F, 0xFF, 0x1FF,0x3FF, 0x7FF, 0xFFF, 0x1FFF]); /* copy from CCITT G.711 specifications */ var _u2a = new Uint8Array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128]); /* A- to u-law conversions */ var _a2u = new Uint8Array([1, 3, 5, 7, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 48, 49, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]); function search( val, table, size) { var i; for (i = 0; i < size; i++) { if (val <= table[i]) return (i); } return (size); } function linear2alaw(pcm_val) /* 2's complement (16-bit range) */ { var mask; var seg; var aval; pcm_val = pcm_val >> 3; if (pcm_val >= 0) { mask = 0xD5; /* sign (7th) bit = 1 */ } else { mask = 0x55; /* sign bit = 0 */ pcm_val = -pcm_val - 1; } /* Convert the scaled magnitude to segment number. */ seg = search(pcm_val, seg_aend, 8); /* Combine the sign, segment, and quantization bits. */ if (seg >= 8) /* out of range, return maximum value. */ return (0x7F ^ mask); else { aval = seg << SEG_SHIFT; if (seg < 2) aval |= (pcm_val >> 1) & QUANT_MASK; else aval |= (pcm_val >> seg) & QUANT_MASK; return (aval ^ mask); } } /* * alaw2linear() - Convert an A-law value to 16-bit linear PCM * */ function alaw2linear(a_val){ var t; var seg; a_val ^= 0x55; t = (a_val & QUANT_MASK) << 4; seg = (a_val & SEG_MASK) >> SEG_SHIFT; switch (seg) { case 0: t += 8; break; case 1: t += 0x108; break; default: t += 0x108; t <<= seg - 1; } return ((a_val & SIGN_BIT) ? t : -t); } // #define BIAS (0x84) /* Bias for linear code. */ // #define CLIP 8159 var BIAS = 0x84; var CLIP = 8159; // /* // * linear2ulaw() - Convert a linear PCM value to u-law // * // * In order to simplify the encoding process, the original linear magnitude // * is biased by adding 33 which shifts the encoding range from (0 - 8158) to // * (33 - 8191). The result can be seen in the following encoding table: // * // * Biased Linear Input Code Compressed Code // * ------------------------ --------------- // * 00000001wxyza 000wxyz // * 0000001wxyzab 001wxyz // * 000001wxyzabc 010wxyz // * 00001wxyzabcd 011wxyz // * 0001wxyzabcde 100wxyz // * 001wxyzabcdef 101wxyz // * 01wxyzabcdefg 110wxyz // * 1wxyzabcdefgh 111wxyz // * // * Each biased linear code has a leading 1 which identifies the segment // * number. The value of the segment number is equal to 7 minus the number // * of leading 0's. The quantization interval is directly available as the // * four bits wxyz. * The trailing bits (a - h) are ignored. // * // * Ordinarily the complement of the resulting code word is used for // * transmission, and so the code word is complemented before it is returned. // * // * For further information see John C. Bellamy's Digital Telephony, 1982, // * John Wiley & Sons, pps 98-111 and 472-476. function linear2ulaw(pcm_val) /* 2's complement (16-bit range) */ { var mask; var seg; var uval; /* Get the sign and the magnitude of the value. */ pcm_val = pcm_val >> 2; if (pcm_val < 0) { pcm_val = -pcm_val; mask = 0x7F; } else { mask = 0xFF; } if ( pcm_val > CLIP ) pcm_val = CLIP; /* clip the magnitude */ pcm_val += (BIAS >> 2); /* Convert the scaled magnitude to segment number. */ seg = search(pcm_val, seg_uend, 8); /* * Combine the sign, segment, quantization bits; * and complement the code word. */ if (seg >= 8) /* out of range, return maximum value. */ return (0x7F ^ mask); else { uval = (seg << 4) | ((pcm_val >> (seg + 1)) & 0xF); return (uval ^ mask); } } // /* // * ulaw2linear() - Convert a u-law value to 16-bit linear PCM // * // * First, a biased linear code is derived from the code word. An unbiased // * output can then be obtained by subtracting 33 from the biased code. // * // * Note that this function expects to be passed the complement of the // * original code word. This is in keeping with ISDN conventions. // */ function ulaw2linear(u_val) { var t; /* Complement to obtain normal u-law value. */ u_val = ~u_val; /* * Extract and bias the quantization bits. Then * shift up by the segment number and subtract out the bias. */ t = ((u_val & QUANT_MASK) << 3) + BIAS; t <<= (u_val & SEG_MASK) >> SEG_SHIFT; return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS)); } // /* A-law to u-law conversion */ function alaw2ulaw(aval) { aval &= 0xff; return ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) : (0x7F ^ _a2u[aval ^ 0x55])); } /* u-law to A-law conversion */ function ulaw2alaw(uval) { uval &= 0xff; return ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) : (0x55 ^ (_u2a[0x7F ^ uval] - 1))); } // unsigned char linear_to_alaw[65536]; // unsigned char linear_to_ulaw[65536]; var short_index = new Int16Array(65536); var linear_to_alaw = new Uint8Array(65536); var linear_to_ulaw = new Uint8Array(65536); // /* 16384 entries per table (8 bit) */ // unsigned short alaw_to_linear[256]; // unsigned short ulaw_to_linear[256]; var alaw_to_linear = new Uint8Array(256); var ulaw_to_linear = new Uint8Array(256); function build_linear_to_xlaw_table(linear_to_xlaw,linear2xlaw) { var i; for (i=0; i<65536;i++){ var v = linear2xlaw(short_index[i]); linear_to_xlaw[i] = v; } } function build_xlaw_to_linear_table(xlaw_to_linear,xlaw2linear) { var i; for (i=0; i<256;i++){ xlaw_to_linear[i] = xlaw2linear(i); } } function pcm16_to_xlaw(linear_to_xlaw, src_length,src_samples,dst_samples) { var i; var s_samples; s_samples = src_samples; for (i=0; i < src_length / 2; i++) { dst_samples[i] = linear_to_xlaw[s_samples[i]]; } } function xlaw_to_pcm16(xlaw_to_linear, src_length,src_samples, dst_samples) { var i; var s_samples; var d_samples; s_samples = src_samples; d_samples = dst_samples; for (i=0; i < src_length; i++) { d_samples[i] = xlaw_to_linear[s_samples[i]]; } } function pcm16_to_alaw(src_length, src_samples, dst_samples) { pcm16_to_xlaw(linear_to_alaw, src_length, src_samples, dst_samples); } function pcm16_to_ulaw(src_length, src_samples, dst_samples) { pcm16_to_xlaw(linear_to_ulaw, src_length, src_samples, dst_samples); } function alaw_to_pcm16(src_length, src_samples, dst_samples) { xlaw_to_pcm16(alaw_to_linear, src_length, src_samples, dst_samples); } function ulaw_to_pcm16(src_length, src_samples, dst_samples) { xlaw_to_pcm16(ulaw_to_linear, src_length, src_samples, dst_samples); } function pcm16_alaw_tableinit() { build_linear_to_xlaw_table(linear_to_alaw, linear2alaw); } function pcm16_ulaw_tableinit() { build_linear_to_xlaw_table(linear_to_ulaw, linear2ulaw); } function alaw_pcm16_tableinit() { build_xlaw_to_linear_table(alaw_to_linear, alaw2linear); } function ulaw_pcm16_tableinit() { build_xlaw_to_linear_table(ulaw_to_linear, ulaw2linear); } for(var i =0; i < 65536;i++){ short_index[i] = i; } pcm16_alaw_tableinit(); pcm16_ulaw_tableinit(); alaw_pcm16_tableinit(); ulaw_pcm16_tableinit();