Files
go-rknnlite/example/yolov5/yolov5.go

181 lines
4.5 KiB
Go

/*
Example code showing how to perform object detection using a YOLOv5 model.
*/
package main
import (
"flag"
"fmt"
"github.com/swdee/go-rknnlite"
"github.com/swdee/go-rknnlite/postprocess"
"github.com/swdee/go-rknnlite/preprocess"
"github.com/swdee/go-rknnlite/render"
"gocv.io/x/gocv"
"log"
"os"
"time"
)
func main() {
// disable logging timestamps
log.SetFlags(0)
// read in cli flags
modelFile := flag.String("m", "../data/yolov5s-640-640-rk3588.rknn", "RKNN compiled YOLO model file")
imgFile := flag.String("i", "../data/bus.jpg", "Image file to run object detection on")
labelFile := flag.String("l", "../data/coco_80_labels_list.txt", "Text file containing model labels")
saveFile := flag.String("o", "../data/bus-yolov5-out.jpg", "The output JPG file with object detection markers")
flag.Parse()
err := rknnlite.SetCPUAffinity(rknnlite.RK3588FastCores)
if err != nil {
log.Printf("Failed to set CPU Affinity: %w", err)
}
// create rknn runtime instance
rt, err := rknnlite.NewRuntime(*modelFile, rknnlite.NPUCoreAuto)
if err != nil {
log.Fatal("Error initializing RKNN runtime: ", err)
}
// set runtime to leave output tensors as int8
rt.SetWantFloat(false)
// optional querying of model file tensors and SDK version for printing
// to stdout. not necessary for production inference code
err = rt.Query(os.Stdout)
if err != nil {
log.Fatal("Error querying runtime: ", err)
}
// create YOLOv5 post processor
yoloProcesser := postprocess.NewYOLOv5(postprocess.YOLOv5COCOParams())
// load in Model class names
classNames, err := rknnlite.LoadLabels(*labelFile)
if err != nil {
log.Fatal("Error loading model labels: ", err)
}
// load image
img := gocv.IMRead(*imgFile, gocv.IMReadColor)
if img.Empty() {
log.Fatal("Error reading image from: ", *imgFile)
}
// convert colorspace and resize image
rgbImg := gocv.NewMat()
gocv.CvtColor(img, &rgbImg, gocv.ColorBGRToRGB)
resizer := preprocess.NewResizer(img.Cols(), img.Rows(),
int(rt.InputAttrs()[0].Dims[1]), int(rt.InputAttrs()[0].Dims[2]))
cropImg := rgbImg.Clone()
resizer.LetterBoxResize(rgbImg, &cropImg, render.Black)
defer img.Close()
defer rgbImg.Close()
defer cropImg.Close()
start := time.Now()
// perform inference on image file
outputs, err := rt.Inference([]gocv.Mat{cropImg})
if err != nil {
log.Fatal("Runtime inferencing failed with error: ", err)
}
endInference := time.Now()
detectResults := yoloProcesser.DetectObjects(outputs, resizer)
endDetect := time.Now()
render.DetectionBoxes(&img, detectResults, classNames,
render.DefaultFont(), 2)
endRendering := time.Now()
// output detection boxes to stdout
for _, detResult := range detectResults {
fmt.Printf("%s @ (%d %d %d %d) %f\n", classNames[detResult.Class], detResult.Box.Left, detResult.Box.Top, detResult.Box.Right, detResult.Box.Bottom, detResult.Probability)
}
log.Printf("Model first run speed: inference=%s, post processing=%s, rendering=%s, total time=%s\n",
endInference.Sub(start).String(),
endDetect.Sub(endInference).String(),
endRendering.Sub(endDetect).String(),
endRendering.Sub(start).String(),
)
// Save the result
if ok := gocv.IMWrite(*saveFile, img); !ok {
log.Fatal("Failed to save the image")
}
log.Printf("Saved object detection result to %s\n", *saveFile)
// free outputs allocated in C memory after you have finished post processing
err = outputs.Free()
if err != nil {
log.Fatal("Error freeing Outputs: ", err)
}
// optional code. run benchmark to get average time
runBenchmark(rt, yoloProcesser, []gocv.Mat{cropImg}, classNames, resizer, img)
// close runtime and release resources
err = rt.Close()
if err != nil {
log.Fatal("Error closing RKNN runtime: ", err)
}
log.Println("done")
}
func runBenchmark(rt *rknnlite.Runtime, yoloProcesser *postprocess.YOLOv5,
mats []gocv.Mat, classNames []string, resizer *preprocess.Resizer,
srcImg gocv.Mat) {
count := 100
start := time.Now()
for i := 0; i < count; i++ {
// perform inference on image file
outputs, err := rt.Inference(mats)
if err != nil {
log.Fatal("Runtime inferencing failed with error: ", err)
}
// post process
detectResults := yoloProcesser.DetectObjects(outputs, resizer)
render.DetectionBoxes(&srcImg, detectResults, classNames,
render.DefaultFont(), 2)
err = outputs.Free()
if err != nil {
log.Fatal("Error freeing Outputs: ", err)
}
}
end := time.Now()
total := end.Sub(start)
avg := total / time.Duration(count)
log.Printf("Benchmark time=%s, count=%d, average total time=%s\n",
total.String(), count, avg.String(),
)
}