Files
go-rknnlite/example/ppocr/recognise/recognise.go

185 lines
4.9 KiB
Go

/*
Example code showing how to perform OCR on an image using PaddleOCR recognition
*/
package main
import (
"flag"
"github.com/swdee/go-rknnlite"
"github.com/swdee/go-rknnlite/postprocess"
"github.com/swdee/go-rknnlite/preprocess"
"github.com/swdee/go-rknnlite/render"
"gocv.io/x/gocv"
"log"
"os"
"strings"
"time"
)
func main() {
// disable logging timestamps
log.SetFlags(0)
// read in cli flags
modelFile := flag.String("m", "../../data/models/rk3588/ppocrv4_rec-rk3588.rknn", "RKNN compiled model file")
imgFile := flag.String("i", "../../data/ppocr-rec-test.png", "Image file to run inference on")
keysFile := flag.String("k", "../../data/ppocr_keys_v1.txt", "Text file containing OCR character keys")
rkPlatform := flag.String("p", "rk3588", "Rockchip CPU Model number [rk3562|rk3566|rk3568|rk3576|rk3582|rk3582|rk3588]")
flag.Parse()
err := rknnlite.SetCPUAffinityByPlatform(*rkPlatform, rknnlite.FastCores)
if err != nil {
log.Printf("Failed to set CPU Affinity: %v\n", err)
}
// check if user specified model file or if default is being used. if default
// then pick the default platform model to use.
if f := flag.Lookup("m"); f != nil && f.Value.String() == f.DefValue && *rkPlatform != "rk3588" {
*modelFile = strings.ReplaceAll(*modelFile, "rk3588", *rkPlatform)
}
// create rknn runtime instance
rt, err := rknnlite.NewRuntimeByPlatform(*rkPlatform, *modelFile)
if err != nil {
log.Fatal("Error initializing RKNN runtime: ", err)
}
// set runtime to pass input gocv.Mat's to Inference() function as float32
// to RKNN backend
rt.SetInputTypeFloat32(true)
// optional querying of model file tensors and SDK version for printing
// to stdout. not necessary for production inference code
err = rt.Query(os.Stdout)
if err != nil {
log.Fatal("Error querying runtime: ", err)
}
// load in Model character labels
modelChars, err := rknnlite.LoadLabels(*keysFile)
if err != nil {
log.Fatal("Error loading model OCR character keys: ", err)
}
// check that we have as many modelChars as tensor outputs dimension
if len(modelChars) != int(rt.OutputAttrs()[0].Dims[2]) {
log.Fatalf("OCR character keys text input has %d characters and does "+
"not match the required number in the Model of %d",
len(modelChars), rt.OutputAttrs()[0].Dims[2])
}
// create PPOCR post processor
ppocrProcessor := postprocess.NewPPOCRRecognise(postprocess.PPOCRRecogniseParams{
ModelChars: modelChars,
OutputSeqLen: int(rt.InputAttrs()[0].Dims[2]) / 8, // modelWidth (320/8)
})
// load image
img := gocv.IMRead(*imgFile, gocv.IMReadColor)
if img.Empty() {
log.Fatal("Error reading image from: ", *imgFile)
}
// resize image to 320x48 and keep aspect ratio, centered with black letterboxing
resizedImg := gocv.NewMat()
resizer := preprocess.NewResizer(img.Cols(), img.Rows(),
int(rt.InputAttrs()[0].Dims[2]), int(rt.InputAttrs()[0].Dims[1]),
)
resizer.LetterBoxResize(img, &resizedImg, render.Black)
// convert image to float32 in 3 channels
resizedImg.ConvertTo(&resizedImg, gocv.MatTypeCV32FC3)
// normalize the image (img - 127.5) / 127.5
resizedImg.AddFloat(-127.5)
resizedImg.DivideFloat(127.5)
defer img.Close()
defer resizedImg.Close()
defer resizer.Close()
start := time.Now()
// perform inference on image file
outputs, err := rt.Inference([]gocv.Mat{resizedImg})
if err != nil {
log.Fatal("Runtime inferencing failed with error: ", err)
}
endInference := time.Now()
results := ppocrProcessor.Recognise(outputs)
endRecognise := time.Now()
log.Printf("Model first run speed: inference=%s, post processing=%s, total time=%s\n",
endInference.Sub(start).String(),
endRecognise.Sub(endInference).String(),
endRecognise.Sub(start).String(),
)
for _, result := range results {
log.Printf("Recognize result: %s, score=%.2f", result.Text, result.Score)
}
// free outputs allocated in C memory after you have finished post processing
err = outputs.Free()
if err != nil {
log.Fatal("Error freeing Outputs: ", err)
}
// optional code. run benchmark to get average time of 10 runs
runBenchmark(rt, ppocrProcessor, []gocv.Mat{resizedImg})
// close runtime and release resources
err = rt.Close()
if err != nil {
log.Fatal("Error closing RKNN runtime: ", err)
}
log.Println("done")
}
func runBenchmark(rt *rknnlite.Runtime, ppocrProcessor *postprocess.PPOCRRecognise,
mats []gocv.Mat) {
count := 100
start := time.Now()
for i := 0; i < count; i++ {
// perform inference on image file
outputs, err := rt.Inference(mats)
if err != nil {
log.Fatal("Runtime inferencing failed with error: ", err)
}
// post process
_ = ppocrProcessor.Recognise(outputs)
err = outputs.Free()
if err != nil {
log.Fatal("Error freeing Outputs: ", err)
}
}
end := time.Now()
total := end.Sub(start)
avg := total / time.Duration(count)
log.Printf("Benchmark time=%s, count=%d, average total time=%s\n",
total.String(), count, avg.String(),
)
}