Files
go-rknnlite/example/mobilenet/mobilenet.go

102 lines
2.6 KiB
Go

/*
Example code showing how to perform inferencing using a MobileNetv1 model.
*/
package main
import (
"flag"
"github.com/swdee/go-rknnlite"
"gocv.io/x/gocv"
"image"
"log"
"os"
"strings"
)
func main() {
// disable logging timestamps
log.SetFlags(0)
// read in cli flags
modelFile := flag.String("m", "../data/models/rk3588/mobilenet_v1-rk3588.rknn", "RKNN compiled model file")
imgFile := flag.String("i", "../data/cat_224x224.jpg", "Image file to run inference on")
rkPlatform := flag.String("p", "rk3588", "Rockchip CPU Model number [rk3562|rk3566|rk3568|rk3576|rk3582|rk3582|rk3588]")
flag.Parse()
err := rknnlite.SetCPUAffinityByPlatform(*rkPlatform, rknnlite.FastCores)
if err != nil {
log.Printf("Failed to set CPU Affinity: %v", err)
}
// check if user specified model file or if default is being used. if default
// then pick the default platform model to use.
if f := flag.Lookup("m"); f != nil && f.Value.String() == f.DefValue && *rkPlatform != "rk3588" {
*modelFile = strings.ReplaceAll(*modelFile, "rk3588", *rkPlatform)
}
// create rknn runtime instance
rt, err := rknnlite.NewRuntimeByPlatform(*rkPlatform, *modelFile)
if err != nil {
log.Fatal("Error initializing RKNN runtime: ", err)
}
// optional querying of model file tensors and SDK version for printing
// to stdout. not necessary for production inference code
err = rt.Query(os.Stdout)
if err != nil {
log.Fatal("Error querying runtime: ", err)
}
// load image
img := gocv.IMRead(*imgFile, gocv.IMReadColor)
if img.Empty() {
log.Fatal("Error reading image from: ", *imgFile)
}
// convert colorspace and resize image
rgbImg := gocv.NewMat()
gocv.CvtColor(img, &rgbImg, gocv.ColorBGRToRGB)
cropImg := rgbImg.Clone()
scaleSize := image.Pt(int(rt.InputAttrs()[0].Dims[1]), int(rt.InputAttrs()[0].Dims[2]))
gocv.Resize(rgbImg, &cropImg, scaleSize, 0, 0, gocv.InterpolationArea)
defer img.Close()
defer rgbImg.Close()
defer cropImg.Close()
// perform inference on image file
outputs, err := rt.Inference([]gocv.Mat{cropImg})
if err != nil {
log.Fatal("Runtime inferencing failed with error: ", err)
}
// post process outputs and show top5 matches
log.Println(" --- Top5 ---")
for _, next := range rknnlite.GetTop5(outputs.Output) {
log.Printf("%3d: %8.6f\n", next.LabelIndex, next.Probability)
}
// free outputs allocated in C memory after you have finished post processing
err = outputs.Free()
if err != nil {
log.Fatal("Error freeing Outputs: ", err)
}
// close runtime and release resources
err = rt.Close()
if err != nil {
log.Fatal("Error closing RKNN runtime: ", err)
}
log.Println("done")
}