Files
go-face/facerec.cc
2019-08-31 21:24:41 +03:00

273 lines
8.9 KiB
C++

#include <shared_mutex>
#include <dlib/dnn.h>
#include <dlib/image_loader/image_loader.h>
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/graph_utils.h>
#include "facerec.h"
#include "jpeg_mem_loader.h"
#include "classify.h"
using namespace dlib;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
template <int N, template <typename> class BN, int stride, typename SUBNET>
using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
template <int N, typename SUBNET> using ares = relu<residual<block,N,affine,SUBNET>>;
template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;
template <typename SUBNET> using alevel0 = ares_down<256,SUBNET>;
template <typename SUBNET> using alevel1 = ares<256,ares<256,ares_down<256,SUBNET>>>;
template <typename SUBNET> using alevel2 = ares<128,ares<128,ares_down<128,SUBNET>>>;
template <typename SUBNET> using alevel3 = ares<64,ares<64,ares<64,ares_down<64,SUBNET>>>>;
template <typename SUBNET> using alevel4 = ares<32,ares<32,ares<32,SUBNET>>>;
template <long num_filters, typename SUBNET> using con5d = con<num_filters,5,5,2,2,SUBNET>;
template <long num_filters, typename SUBNET> using con5 = con<num_filters,5,5,1,1,SUBNET>;
template <typename SUBNET> using downsampler = relu<affine<con5d<32, relu<affine<con5d<32, relu<affine<con5d<16,SUBNET>>>>>>>>>;
template <typename SUBNET> using rcon5 = relu<affine<con5<45,SUBNET>>>;
using cnn_anet_type = loss_mmod<con<1,9,9,1,1,rcon5<rcon5<rcon5<downsampler<input_rgb_image_pyramid<pyramid_down<6>>>>>>>>;
using anet_type = loss_metric<fc_no_bias<128,avg_pool_everything<
alevel0<
alevel1<
alevel2<
alevel3<
alevel4<
max_pool<3,3,2,2,relu<affine<con<32,7,7,2,2,
input_rgb_image_sized<150>
>>>>>>>>>>>>;
static const size_t RECT_LEN = 4;
static const size_t DESCR_LEN = 128;
static const size_t SHAPE_LEN = 2;
static const size_t RECT_SIZE = RECT_LEN * sizeof(long);
static const size_t DESCR_SIZE = DESCR_LEN * sizeof(float);
static const size_t SHAPE_SIZE = SHAPE_LEN * sizeof(long);
static std::vector<matrix<rgb_pixel>> jitter_image(
const matrix<rgb_pixel>& img,
int count
);
class FaceRec {
public:
FaceRec(const char* model_dir) {
detector_ = get_frontal_face_detector();
std::string dir = model_dir;
std::string shape_predictor_path = dir + "/shape_predictor_5_face_landmarks.dat";
std::string resnet_path = dir + "/dlib_face_recognition_resnet_model_v1.dat";
std::string cnn_resnet_path = dir + "/mmod_human_face_detector.dat";
deserialize(shape_predictor_path) >> sp_;
deserialize(resnet_path) >> net_;
deserialize(cnn_resnet_path) >> cnn_net_;
jittering = 0;
size = 150;
padding = 0.25;
}
std::tuple<std::vector<rectangle>, std::vector<descriptor>, std::vector<full_object_detection>>
Recognize(const matrix<rgb_pixel>& img,int max_faces,int type) {
std::vector<rectangle> rects;
std::vector<descriptor> descrs;
std::vector<full_object_detection> shapes;
if(type == 0) {
std::lock_guard<std::mutex> lock(detector_mutex_);
rects = detector_(img);
} else{
std::lock_guard<std::mutex> lock(cnn_net_mutex_);
auto dets = cnn_net_(img);
for (auto&& d : dets) {
rects.push_back(d.rect);
}
}
// Short circuit.
if (rects.size() == 0 || (max_faces > 0 && rects.size() > (size_t)max_faces))
return {std::move(rects), std::move(descrs), std::move(shapes)};
std::sort(rects.begin(), rects.end());
for (const auto& rect : rects) {
auto shape = sp_(img, rect);
shapes.push_back(shape);
matrix<rgb_pixel> face_chip;
extract_image_chip(img, get_face_chip_details(shape, size, padding), face_chip);
std::lock_guard<std::mutex> lock(net_mutex_);
if (jittering > 0) {
descrs.push_back(mean(mat(net_(jitter_image(std::move(face_chip), jittering)))));
} else {
descrs.push_back(net_(face_chip));
}
}
return {std::move(rects), std::move(descrs), std::move(shapes)};
}
void SetSamples(std::vector<descriptor>&& samples, std::vector<int>&& cats) {
std::unique_lock<std::shared_mutex> lock(samples_mutex_);
samples_ = std::move(samples);
cats_ = std::move(cats);
}
int Classify(const descriptor& test_sample, float tolerance) {
std::shared_lock<std::shared_mutex> lock(samples_mutex_);
return classify(samples_, cats_, test_sample, tolerance);
}
void Config(unsigned long new_size, double new_padding, int new_jittering) {
size = new_size;
padding = new_padding;
jittering = new_jittering;
}
private:
std::mutex detector_mutex_;
std::mutex net_mutex_;
std::mutex cnn_net_mutex_;
std::shared_mutex samples_mutex_;
frontal_face_detector detector_;
shape_predictor sp_;
anet_type net_;
cnn_anet_type cnn_net_;
std::vector<descriptor> samples_;
std::vector<int> cats_;
int jittering;
unsigned long size;
double padding;
};
// Plain C interface for Go.
facerec* facerec_init(const char* model_dir) {
facerec* rec = (facerec*)calloc(1, sizeof(facerec));
try {
FaceRec* cls = new FaceRec(model_dir);
rec->cls = (void*)cls;
} catch(serialization_error& e) {
rec->err_str = strdup(e.what());
rec->err_code = SERIALIZATION_ERROR;
} catch (std::exception& e) {
rec->err_str = strdup(e.what());
rec->err_code = UNKNOWN_ERROR;
}
return rec;
}
void facerec_config(facerec* rec, unsigned long size, double padding, int jittering) {
FaceRec* cls = (FaceRec*)(rec->cls);
cls->Config(size,padding,jittering);
}
faceret* facerec_recognize(facerec* rec, const uint8_t* img_data, int len, int max_faces,int type) {
faceret* ret = (faceret*)calloc(1, sizeof(faceret));
FaceRec* cls = (FaceRec*)(rec->cls);
matrix<rgb_pixel> img;
std::vector<rectangle> rects;
std::vector<descriptor> descrs;
std::vector<full_object_detection> shapes;
try {
// TODO(Kagami): Support more file types?
load_mem_jpeg(img, img_data, len);
std::tie(rects, descrs, shapes) = cls->Recognize(img, max_faces,type);
} catch(image_load_error& e) {
ret->err_str = strdup(e.what());
ret->err_code = IMAGE_LOAD_ERROR;
return ret;
} catch (std::exception& e) {
ret->err_str = strdup(e.what());
ret->err_code = UNKNOWN_ERROR;
return ret;
}
ret->num_faces = descrs.size();
if (ret->num_faces == 0)
return ret;
ret->rectangles = (long*)malloc(ret->num_faces * RECT_SIZE);
for (int i = 0; i < ret->num_faces; i++) {
long* dst = ret->rectangles + i * RECT_LEN;
dst[0] = rects[i].left();
dst[1] = rects[i].top();
dst[2] = rects[i].right();
dst[3] = rects[i].bottom();
}
ret->descriptors = (float*)malloc(ret->num_faces * DESCR_SIZE);
for (int i = 0; i < ret->num_faces; i++) {
void* dst = (uint8_t*)(ret->descriptors) + i * DESCR_SIZE;
void* src = (void*)&descrs[i](0,0);
memcpy(dst, src, DESCR_SIZE);
}
ret->num_shapes = shapes[0].num_parts();
ret->shapes = (long*)malloc(ret->num_faces * ret->num_shapes * SHAPE_SIZE);
for (int i = 0; i < ret->num_faces; i++) {
long* dst = ret->shapes + i * ret->num_shapes * SHAPE_LEN;
const auto& shape = shapes[i];
for (int j = 0; j < ret->num_shapes; j++) {
dst[j*SHAPE_LEN] = shape.part(j).x();
dst[j*SHAPE_LEN+1] = shape.part(j).y();
}
}
return ret;
}
void facerec_set_samples(
facerec* rec,
const float* c_samples,
const int32_t* c_cats,
int len
) {
FaceRec* cls = (FaceRec*)(rec->cls);
std::vector<descriptor> samples;
samples.reserve(len);
for (int i = 0; i < len; i++) {
descriptor sample = mat(c_samples + i*DESCR_LEN, DESCR_LEN, 1);
samples.push_back(std::move(sample));
}
std::vector<int> cats(c_cats, c_cats + len);
cls->SetSamples(std::move(samples), std::move(cats));
}
int facerec_classify(facerec* rec, const float* c_test_sample, float tolerance) {
FaceRec* cls = (FaceRec*)(rec->cls);
descriptor test_sample = mat(c_test_sample, DESCR_LEN, 1);
return cls->Classify(test_sample, tolerance);
}
void facerec_free(facerec* rec) {
if (rec) {
if (rec->cls) {
FaceRec* cls = (FaceRec*)(rec->cls);
delete cls;
rec->cls = NULL;
}
free(rec);
}
}
static std::vector<matrix<rgb_pixel>> jitter_image(
const matrix<rgb_pixel>& img,
int count
)
{
// All this function does is make count copies of img, all slightly jittered by being
// zoomed, rotated, and translated a little bit differently. They are also randomly
// mirrored left to right.
thread_local dlib::rand rnd;
std::vector<matrix<rgb_pixel>> crops;
for (int i = 0; i < count; ++i)
crops.push_back(jitter_image(img,rnd));
return crops;
}