Files
go-face/face.go
2021-06-30 17:51:11 +03:00

262 lines
7.4 KiB
Go

package face
// #cgo CXXFLAGS: -std=c++1z -Wall -O3 -DNDEBUG -march=native
// #cgo LDFLAGS: -ldlib -lblas -lcblas -llapack -ljpeg
// #include <stdlib.h>
// #include <stdint.h>
// #include "facerec.h"
import "C"
import (
"image"
"io/ioutil"
"math"
"os"
"unsafe"
)
const (
rectLen = 4
descrLen = 128
shapeLen = 2
// We get first 2^20 elements of array of shapes
// (68 shapes per face in case of shape_predictor_68_face_landmarks.dat.bz2).
// 68*shapeLen is bigger than rectLen and descrLen.
maxElements = 1 << 20
maxFaceLimit = maxElements / (68 * shapeLen)
)
// A Recognizer creates face descriptors for provided images and
// classifies them into categories.
type Recognizer struct {
ptr *C.facerec
}
// Face holds coordinates and descriptor of the human face.
type Face struct {
Rectangle image.Rectangle
Descriptor Descriptor
Shapes []image.Point
}
// Descriptor holds 128-dimensional feature vector.
type Descriptor [128]float32
func SquaredEuclideanDistance(d1 Descriptor, d2 Descriptor) (sum float64) {
for i := range d1 {
sum = sum + math.Pow(float64(d2[i]-d1[i]), 2)
}
return sum
}
// New creates new face with the provided parameters.
func New(r image.Rectangle, d Descriptor) Face {
return Face{r, d, []image.Point{}}
}
func NewWithShape(r image.Rectangle, s []image.Point, d Descriptor) Face {
return Face{r, d, s}
}
// NewRecognizer returns a new recognizer interface. modelDir points to
// directory with shape_predictor_5_face_landmarks.dat and
// dlib_face_recognition_resnet_model_v1.dat files.
func NewRecognizer(modelDir string) (rec *Recognizer, err error) {
cModelDir := C.CString(modelDir)
defer C.free(unsafe.Pointer(cModelDir))
ptr := C.facerec_init(cModelDir)
if ptr.err_str != nil {
defer C.facerec_free(ptr)
defer C.free(unsafe.Pointer(ptr.err_str))
err = makeError(C.GoString(ptr.err_str), int(ptr.err_code))
return
}
rec = &Recognizer{ptr}
return
}
func NewRecognizerWithConfig(modelDir string, size int, padding float32, jittering int) (rec *Recognizer, err error) {
rec, err = NewRecognizer(modelDir)
if err != nil {
return
}
cSize := C.ulong(size)
cPadding := C.double(padding)
cJittering := C.int(jittering)
C.facerec_config(rec.ptr, cSize, cPadding, cJittering)
return
}
func (rec *Recognizer) recognize(type_ int, imgData []byte, maxFaces int) (faces []Face, err error) {
if len(imgData) == 0 {
err = ImageLoadError("Empty image")
return
}
if maxFaces > maxFaceLimit {
maxFaces = maxFaceLimit
}
cImgData := (*C.uint8_t)(&imgData[0])
cLen := C.int(len(imgData))
cMaxFaces := C.int(maxFaces)
cType := C.int(type_)
ret := C.facerec_recognize(rec.ptr, cImgData, cLen, cMaxFaces, cType)
defer C.free(unsafe.Pointer(ret))
if ret.err_str != nil {
defer C.free(unsafe.Pointer(ret.err_str))
err = makeError(C.GoString(ret.err_str), int(ret.err_code))
return
}
numFaces := int(ret.num_faces)
if numFaces == 0 {
return
}
numShapes := int(ret.num_shapes)
// Copy faces data to Go structure.
defer C.free(unsafe.Pointer(ret.shapes))
defer C.free(unsafe.Pointer(ret.rectangles))
defer C.free(unsafe.Pointer(ret.descriptors))
rDataLen := numFaces * rectLen
rDataPtr := unsafe.Pointer(ret.rectangles)
rData := (*[maxElements]C.long)(rDataPtr)[:rDataLen:rDataLen]
dDataLen := numFaces * descrLen
dDataPtr := unsafe.Pointer(ret.descriptors)
dData := (*[maxElements]float32)(dDataPtr)[:dDataLen:dDataLen]
sDataLen := numFaces * numShapes * shapeLen
sDataPtr := unsafe.Pointer(ret.shapes)
sData := (*[maxElements]C.long)(sDataPtr)[:sDataLen:sDataLen]
for i := 0; i < numFaces; i++ {
face := Face{}
x0 := int(rData[i*rectLen])
y0 := int(rData[i*rectLen+1])
x1 := int(rData[i*rectLen+2])
y1 := int(rData[i*rectLen+3])
face.Rectangle = image.Rect(x0, y0, x1, y1)
copy(face.Descriptor[:], dData[i*descrLen:(i+1)*descrLen])
for j := 0; j < numShapes; j++ {
shapeX := int(sData[(i*numShapes+j)*shapeLen])
shapeY := int(sData[(i*numShapes+j)*shapeLen+1])
face.Shapes = append(face.Shapes, image.Point{shapeX, shapeY})
}
faces = append(faces, face)
}
return
}
func (rec *Recognizer) recognizeFile(type_ int, imgPath string, maxFaces int) (face []Face, err error) {
fd, err := os.Open(imgPath)
if err != nil {
return
}
defer fd.Close()
imgData, err := ioutil.ReadAll(fd)
if err != nil {
return
}
return rec.recognize(type_, imgData, maxFaces)
}
// Recognize returns all faces found on the provided image, sorted from
// left to right. Empty list is returned if there are no faces, error is
// returned if there was some error while decoding/processing image.
// Only JPEG format is currently supported. Thread-safe.
func (rec *Recognizer) Recognize(imgData []byte) (faces []Face, err error) {
return rec.recognize(0, imgData, 0)
}
func (rec *Recognizer) RecognizeCNN(imgData []byte) (faces []Face, err error) {
return rec.recognize(1, imgData, 0)
}
// RecognizeSingle returns face if it's the only face on the image or
// nil otherwise. Only JPEG format is currently supported. Thread-safe.
func (rec *Recognizer) RecognizeSingle(imgData []byte) (face *Face, err error) {
faces, err := rec.recognize(0, imgData, 1)
if err != nil || len(faces) != 1 {
return
}
face = &faces[0]
return
}
func (rec *Recognizer) RecognizeSingleCNN(imgData []byte) (face *Face, err error) {
faces, err := rec.recognize(1, imgData, 1)
if err != nil || len(faces) != 1 {
return
}
face = &faces[0]
return
}
// Same as Recognize but accepts image path instead.
func (rec *Recognizer) RecognizeFile(imgPath string) (faces []Face, err error) {
return rec.recognizeFile(0, imgPath, 0)
}
func (rec *Recognizer) RecognizeFileCNN(imgPath string) (faces []Face, err error) {
return rec.recognizeFile(1, imgPath, 0)
}
// Same as RecognizeSingle but accepts image path instead.
func (rec *Recognizer) RecognizeSingleFile(imgPath string) (face *Face, err error) {
faces, err := rec.recognizeFile(0, imgPath, 1)
if err != nil || len(faces) != 1 {
return
}
face = &faces[0]
return
}
func (rec *Recognizer) RecognizeSingleFileCNN(imgPath string) (face *Face, err error) {
faces, err := rec.recognizeFile(1, imgPath, 1)
if err != nil || len(faces) != 1 {
return
}
face = &faces[0]
return
}
// SetSamples sets known descriptors so you can classify the new ones.
// Thread-safe.
func (rec *Recognizer) SetSamples(samples []Descriptor, cats []int32) {
if len(samples) == 0 || len(samples) != len(cats) {
return
}
cSamples := (*C.float)(unsafe.Pointer(&samples[0]))
cCats := (*C.int32_t)(unsafe.Pointer(&cats[0]))
cLen := C.int(len(samples))
C.facerec_set_samples(rec.ptr, cSamples, cCats, cLen)
}
// Classify returns class ID for the given descriptor. Negative index is
// returned if no match. Thread-safe.
func (rec *Recognizer) Classify(testSample Descriptor) int {
cTestSample := (*C.float)(unsafe.Pointer(&testSample))
return int(C.facerec_classify(rec.ptr, cTestSample, -1))
}
// Same as Classify but allows to specify max distance between faces to
// consider it a match. Start with 0.6 if not sure.
func (rec *Recognizer) ClassifyThreshold(testSample Descriptor, tolerance float32) int {
cTestSample := (*C.float)(unsafe.Pointer(&testSample))
cTolerance := C.float(tolerance)
return int(C.facerec_classify(rec.ptr, cTestSample, cTolerance))
}
// Close frees resources taken by the Recognizer. Safe to call multiple
// times. Don't use Recognizer after close call.
func (rec *Recognizer) Close() {
C.facerec_free(rec.ptr)
rec.ptr = nil
}