39 Commits
v1.0 ... v1.3.5

Author SHA1 Message Date
Dimitrii Lopanov
b8f4ad6d57 Merge pull request #16 from LdDl/issue-15
Issue 15
2021-02-01 08:07:24 +03:00
Dimitrii
40df8cce91 free_network_ptr instead of free_network 2021-01-30 13:57:21 +03:00
Dimitrii
13a0697585 remove sleep 2021-01-28 14:26:52 +03:00
Dimitrii
29e4d0d8bb clean 2021-01-28 14:20:38 +03:00
Dimitrii
165e59aaf3 remove defer for image 2021-01-28 14:20:08 +03:00
Dimitrii
81223ac67d start solving issue 2021-01-28 13:43:35 +03:00
Dimitrii Lopanov
7cbe2f50a7 load file 2020-10-16 13:20:22 +03:00
Dimitrii Lopanov
6a381223fa provide example picture 2020-10-16 13:18:39 +03:00
Dimitrii Lopanov
a039e75b22 Merge pull request #14 from LdDl/examples
Examples
2020-10-16 12:55:53 +03:00
Dimitrii Lopanov
7f94c3bdcc readme and minor 2020-10-16 12:52:56 +03:00
Dimitrii Lopanov
e5d170ef8b inital rest example 2020-10-16 12:14:06 +03:00
Dimitrii Lopanov
85730b925c move base example to its own folder 2020-10-16 11:02:59 +03:00
Dimitrii Lopanov
55221029de Merge pull request #13 from LdDl/install-darknet
makefile and minor
2020-10-16 10:58:46 +03:00
Dimitrii Lopanov
e0a6735667 makefile and minor 2020-10-16 10:15:18 +03:00
Dimitrii
c9bbd3eee4 update darknet latest commit 2020-10-15 19:58:08 +03:00
Dimitrii Lopanov
5539377f1c Merge pull request #11 from LdDl/add-license-2
Create LICENSE
2020-10-15 17:22:26 +03:00
Dimitrii Lopanov
10cd5f6e1a Update issue templates 2020-10-15 17:22:14 +03:00
Dimitrii Lopanov
2a51e807d8 Create LICENSE 2020-10-15 17:20:54 +03:00
Dimitrii Lopanov
df9804aa69 Merge pull request #9 from LdDl/issue-8
network_predict
2020-08-11 12:11:04 +03:00
Dimitrii
68ad5efb35 network_predict 2020-08-11 12:08:59 +03:00
Dimitrii Lopanov
5e18d06f26 badges 2020-06-25 16:31:13 +03:00
Dimitrii Lopanov
ebf93ddfa6 minor 2020-06-19 10:28:20 +03:00
Dimitrii Lopanov
8bd8488c7f minor 2020-06-18 10:40:02 +03:00
Dimitrii Lopanov
420a74769d Merge pull request #7 from LdDl/mleak
Closes #6
2020-05-15 16:07:41 +03:00
Dimitrii
527e2942e9 clean up 2020-05-15 16:05:02 +03:00
Dimitrii
8105b8f1ae chechk latest alexeyab fork + yolov4 upd 2020-05-07 13:02:31 +03:00
Dimitrii
c625572f8c Merge branch 'master' of github.com:LdDl/go-darknet 2020-05-05 20:30:36 +03:00
Dimitrii
a58fecd863 clear newrgba memory and slice leaks 2020-05-05 20:30:25 +03:00
Dimitrii Lopanov
435d3f662c Merge pull request #5 from x0rzkov/docker
add docker container for cpu/gpu

Thanks a lot.
2020-04-10 15:43:03 +03:00
lucmichalski
d9682ca0f6 fix libcuda.so.1 missing 2020-04-10 04:58:21 +00:00
lucmichalski
4b38088916 fix commit, add golang to dockerfile.gpu 2020-04-08 08:16:20 +00:00
lucmichalski
766ff56e2e fix dockerfile.gpu 2020-04-08 08:02:03 +00:00
lucmichalski
3166cdca78 add docker container for cpu/gpu 2020-04-08 07:52:55 +00:00
Dimitrii Lopanov
02ab33b804 Merge pull request #3 from LdDl/new_example
Example of saving detected objects
2020-04-08 09:43:39 +03:00
Dimitrii Lopanov
0fd261e605 upd 2020-04-08 09:41:32 +03:00
Dimitrii
4c39be01f9 ptr causes segfault 2020-03-24 11:50:07 +03:00
Dimitrii
2dd85a84d6 rdm 2020-02-26 08:41:26 +03:00
Dimitrii
3a10d5a657 Merge branch 'master' of github.com:LdDl/go-darknet 2020-02-26 08:40:40 +03:00
Dimitrii
95332e0877 upd readmes 2020-02-26 08:34:03 +03:00
25 changed files with 1409 additions and 123 deletions

26
.github/ISSUE_TEMPLATE/bug_report.md vendored Normal file
View File

@@ -0,0 +1,26 @@
---
name: Bug report
about: Create a report to help us improve
title: "[BUG]"
labels: bug, help wanted
assignees: LdDl
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior
**Expected behavior**
A clear and concise description of what you expected to happen.
**Expected behavior**
A clear and concise description of what you expected to happen.
**Describe the solution you'd like and provide pseudocode examples if you can**
A clear and concise description of what you want to happen.
**Additional context**
Add any other context about the problem here.

View File

@@ -0,0 +1,20 @@
---
name: Feature request
about: Suggest an idea for this project
title: "[FEATURE REQUEST]"
labels: enhancement
assignees: LdDl
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is.
**Describe the solution you'd like and provide pseudocode examples if you can**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered and provide pseudocode examples if you can**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

3
.gitignore vendored
View File

@@ -1,8 +1,9 @@
example/main example/main
example/sample.jpg
example/coco.names example/coco.names
example/yolov3.cfg example/yolov3.cfg
example/yolov3.weights example/yolov3.weights
example/yolov4.cfg
example/yolov4.weights
darknet.h darknet.h
*.so *.so
predictions.png predictions.png

201
LICENSE Normal file
View File

@@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [2020] LdDl Dimitrii Lopanov
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

55
Makefile Normal file
View File

@@ -0,0 +1,55 @@
.ONESHELL:
.PHONY: download build clean
# Latest battletested AlexeyAB version of Darknet commit
LATEST_COMMIT?=f056fc3b6a11528fa0522a468eca1e909b7004b7
# Temporary folder for building Darknet
TMP_DIR?=/tmp/
# Download AlexeyAB version of Darknet
download:
rm -rf $(TMP_DIR)install_darknet
mkdir $(TMP_DIR)install_darknet
git clone https://github.com/AlexeyAB/darknet.git $(TMP_DIR)install_darknet
cd $(TMP_DIR)install_darknet
git checkout $(LATEST_COMMIT)
cd -
# Build AlexeyAB version of Darknet for usage with CPU only.
build:
cd $(TMP_DIR)install_darknet
sed -i -e 's/GPU=1/GPU=0/g' Makefile
sed -i -e 's/CUDNN=1/CUDNN=0/g' Makefile
sed -i -e 's/LIBSO=0/LIBSO=1/g' Makefile
$(MAKE) -j $(shell nproc --all)
$(MAKE) preinstall
cd -
# Build AlexeyAB version of Darknet for usage with both CPU and GPU (CUDA by NVIDIA).
build_gpu:
cd $(TMP_DIR)install_darknet
sed -i -e 's/GPU=0/GPU=1/g' Makefile
sed -i -e 's/CUDNN=0/CUDNN=1/g' Makefile
sed -i -e 's/LIBSO=0/LIBSO=1/g' Makefile
$(MAKE) -j $(shell nproc --all)
$(MAKE) preinstall
cd -
# Install system wide.
sudo_install:
cd $(TMP_DIR)install_darknet
sudo cp libdarknet.so /usr/lib/libdarknet.so
sudo cp include/darknet.h /usr/include/darknet.h
sudo ldconfig
cd -
# Cleanup temporary files for building process
clean:
rm -rf $(TMP_DIR)install_darknet
# Do every step for CPU-based only build.
install: download build sudo_install clean
# Do every step for both CPU and GPU-based build.
install_gpu: download build_gpu sudo_install clean

108
README.md
View File

@@ -1,10 +1,16 @@
# go-darknet: Go bindings for Darknet
### This is fork of go-darknet https://github.com/gyonluks/go-darknet applied to FORK of Darknet https://github.com/AlexeyAB/darknet
[![GoDoc](https://godoc.org/github.com/LdDl/go-darknet?status.svg)](https://godoc.org/github.com/LdDl/go-darknet) [![GoDoc](https://godoc.org/github.com/LdDl/go-darknet?status.svg)](https://godoc.org/github.com/LdDl/go-darknet)
[![Sourcegraph](https://sourcegraph.com/github.com/LdDl/go-darknet/-/badge.svg)](https://sourcegraph.com/github.com/LdDl/go-darknet?badge)
[![Go Report Card](https://goreportcard.com/badge/github.com/LdDl/go-darknet)](https://goreportcard.com/report/github.com/LdDl/go-darknet)
[![GitHub tag](https://img.shields.io/github/tag/LdDl/go-darknet.svg)](https://github.com/LdDl/go-darknet/releases)
go-darknet is a Go package, which uses Cgo to enable Go applications to use YOLO in [Darknet]. # go-darknet: Go bindings for Darknet (Yolo V4, Yolo V3)
### go-darknet is a Go package, which uses Cgo to enable Go applications to use YOLO V4/V3 in [Darknet].
#### Since this repository https://github.com/gyonluks/go-darknet is no longer maintained I decided to move on and make little different bindings for Darknet.
#### This bindings aren't for [official implementation](https://github.com/pjreddie/darknet) but for [AlexeyAB's fork](https://github.com/AlexeyAB/darknet).
#### Paper Yolo v4: https://arxiv.org/abs/2004.10934
#### Paper Yolo v3: https://arxiv.org/abs/1804.02767
## Table of Contents ## Table of Contents
@@ -16,27 +22,20 @@ go-darknet is a Go package, which uses Cgo to enable Go applications to use YOLO
## Requirements ## Requirements
For proper codebase please use fork of [darknet](https://github.com/AlexeyAB/darknet). Latest commit I've tested [here](https://github.com/AlexeyAB/darknet/commit/64fb042c63637038671ae9d53c06165599b28912) You need to install fork of [darknet](https://github.com/AlexeyAB/darknet). Latest commit I've tested is [here](https://github.com/AlexeyAB/darknet/commit/d65909fbea471d06e52a2e4a41132380dc2edaa6)
In order to use go-darknet, `libdarknet.so` should be available in one of Use provided [Makefile](Makefile).
the following locations:
* /usr/lib * For CPU-based instalattion:
* /usr/local/lib
Also, [darknet.h] should be available in one of the following locations:
* /usr/include
* /usr/local/include
To achieve it, after Darknet compilation (via make) execute following command:
```shell ```shell
sudo cp libdarknet.so /usr/lib/libdarknet.so && sudo cp include/darknet.h /usr/local/include/darknet.h make install
``` ```
Note: do not forget to set LIBSO=1 in Makefile before executing 'make': * For both CPU and GPU-based instalattion:
```Makefile ```shell
LIBSO=1 make install_gpu
``` ```
Note: If you want to have GPU-acceleration before running command above install [CUDA](https://developer.nvidia.com/cuda-downloads) and [cuDNN](https://developer.nvidia.com/cudnn) (Latest CUDA version I've tested is [10.2](https://developer.nvidia.com/cuda-10.2-download-archive) and cuDNN is [7.6.5](https://developer.nvidia.com/rdp/cudnn-archive#a-collapse765-102))
## Installation ## Installation
```shell ```shell
@@ -49,32 +48,68 @@ Example Go program is provided in the [example] directory. Please refer to the c
Building and running program: Building and running program:
Navigate to [example] folder * Navigate to [example] folder
```shell ```shell
cd $GOPATH/github.com/LdDl/go-darknet/example cd $GOPATH/github.com/LdDl/go-darknet/example/base_example
``` ```
Download dataset (sample of image, coco.names, yolov3.cfg, yolov3.weights). * Download dataset (sample of image, coco.names, yolov4.cfg (or v3), yolov4.weights(or v3)).
```shell ```shell
#for yolo v4
./download_data.sh ./download_data.sh
#for yolo v3
./download_data_v3.sh
``` ```
Note: you don't need *coco.data* file anymore, because sh-script above does insert *coco.names* into 'names' filed in *yolov3.cfg* file (so AlexeyAB's fork can deal with it properly) * Note: you don't need *coco.data* file anymore, because sh-script above does insert *coco.names* into 'names' field in *yolov4.cfg* file (so AlexeyAB's fork can deal with it properly)
So last rows in yolov3.cfg file will look like: So last rows in yolov4.cfg file will look like:
```bash ```bash
...... ......
[yolo] [yolo]
mask = 0,1,2 .....
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 iou_loss=ciou
classes=80 nms_kind=greedynms
num=9 beta_nms=0.6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
names = coco.names # this is path to coco.names file names = coco.names # this is path to coco.names file
``` ```
Build and run program * Also do not forget change batch and subdivisions sizes from:
```shell
batch=64
subdivisions=8
```
to
```shell
batch=1
subdivisions=1
```
It will reduce amount of VRAM used for detector test.
* Build and run program
Yolo V4:
```shell
go build main.go && ./main --configFile=yolov4.cfg --weightsFile=yolov4.weights --imageFile=sample.jpg
```
Output should be something like this:
```shell
traffic light (9): 73.5039% | start point: (238,73) | end point: (251, 106)
truck (7): 96.6401% | start point: (95,79) | end point: (233, 287)
truck (7): 96.4774% | start point: (662,158) | end point: (800, 321)
truck (7): 96.1841% | start point: (0,77) | end point: (86, 333)
truck (7): 46.8695% | start point: (434,173) | end point: (559, 216)
car (2): 99.7370% | start point: (512,188) | end point: (741, 329)
car (2): 99.2533% | start point: (260,191) | end point: (422, 322)
car (2): 99.0333% | start point: (425,201) | end point: (547, 309)
car (2): 83.3919% | start point: (386,210) | end point: (437, 287)
car (2): 75.8621% | start point: (73,199) | end point: (102, 274)
car (2): 39.1925% | start point: (386,206) | end point: (442, 240)
bicycle (1): 76.3121% | start point: (189,298) | end point: (253, 402)
person (0): 97.7213% | start point: (141,129) | end point: (283, 362)
```
Yolo V3:
``` ```
go build main.go && ./main --configFile=yolov3.cfg --weightsFile=yolov3.weights --imageFile=sample.jpg go build main.go && ./main --configFile=yolov3.cfg --weightsFile=yolov3.weights --imageFile=sample.jpg
``` ```
@@ -95,6 +130,7 @@ car (2): 72.8053% | start point: (388,206) | end point: (437, 276)
bicycle (1): 72.2932% | start point: (178,270) | end point: (268, 406) bicycle (1): 72.2932% | start point: (178,270) | end point: (268, 406)
person (0): 97.3026% | start point: (143,135) | end point: (268, 343) person (0): 97.3026% | start point: (143,135) | end point: (268, 343)
``` ```
## Documentation ## Documentation
See go-darknet's API documentation at [GoDoc]. See go-darknet's API documentation at [GoDoc].
@@ -109,5 +145,5 @@ go-darknet follows [Darknet]'s [license].
[darknet.h]: https://github.com/AlexeyAB/darknet/blob/master/include/darknet.h [darknet.h]: https://github.com/AlexeyAB/darknet/blob/master/include/darknet.h
[include/darknet.h]: https://github.com/AlexeyAB/darknet/blob/master/include/darknet.h [include/darknet.h]: https://github.com/AlexeyAB/darknet/blob/master/include/darknet.h
[Makefile]: https://github.com/alexeyab/darknet/blob/master/Makefile [Makefile]: https://github.com/alexeyab/darknet/blob/master/Makefile
[example]: /example [example]: /example/base_example
[GoDoc]: https://godoc.org/github.com/LdDl/go-darknet [GoDoc]: https://godoc.org/github.com/LdDl/go-darknet

1
docker/.env Normal file
View File

@@ -0,0 +1 @@
NAMESPACE=darknet

40
docker/Dockerfile Normal file
View File

@@ -0,0 +1,40 @@
# Build phase
FROM ubuntu:18.04 as builder
ENV darknet_commit=a234a5022333c930de08f2470184ef4e0c68356e
WORKDIR /root/build
COPY Makefile.cpu .
RUN apt-get -y update && \
apt-get -y install --no-install-recommends git build-essential ca-certificates && \
git clone https://github.com/AlexeyAB/darknet && \
cd darknet && \
git checkout $darknet_commit && \
cp -f /root/build/Makefile.cpu Makefile && \
make
# Final Image
FROM golang:1.14
RUN apt-get -y update && \
apt-get -y install --no-install-recommends nano bash jq
WORKDIR /root
COPY --from=builder /root/build/darknet/darknet \
/root/build/darknet/libdarknet.so \
/root/build/darknet/include/darknet.h \
./staging/
RUN mv staging/darknet /usr/local/bin && \
mv staging/darknet.h /usr/include && \
mv staging/libdarknet.so /usr/lib && \
rm -rf staging
RUN go get -u github.com/LdDl/go-darknet \
&& go get -u github.com/disintegration/imaging
WORKDIR /darknet
COPY download_data.sh .
CMD ["/bin/bash"]

52
docker/Dockerfile.gpu Normal file
View File

@@ -0,0 +1,52 @@
# Build phase
FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04 as builder
ENV darknet_commit=a234a5022333c930de08f2470184ef4e0c68356e
WORKDIR /root/build
COPY Makefile.gpu .
RUN apt-get -y update && \
apt-get -y install git build-essential && \
git clone https://github.com/AlexeyAB/darknet.git && \
cd darknet && \
git checkout $darknet_commit && \
cp -f /root/build/Makefile.gpu Makefile && \
make
# Final Image
FROM nvidia/cuda:10.0-cudnn7-runtime-ubuntu18.04
WORKDIR /root
COPY --from=builder /root/build/darknet/darknet \
/root/build/darknet/libdarknet.so \
/root/build/darknet/include/darknet.h \
./staging/
RUN mv staging/darknet /usr/local/bin && \
mv staging/darknet.h /usr/include && \
mv staging/libdarknet.so /usr/lib && \
rm -rf staging
WORKDIR /tmp
RUN cd /tmp \
&& apt-get -y update \
&& apt-get install -y wget git gcc \
&& wget https://dl.google.com/go/go1.14.linux-amd64.tar.gz \
&& tar -xvf go1.14.linux-amd64.tar.gz \
&& mv go /usr/local
RUN cp /usr/local/cuda-10.0/compat/* /usr/local/cuda-10.0/targets/x86_64-linux/lib/
ENV GOROOT=/usr/local/go
ENV GOPATH=/go
ENV PATH=$GOPATH/bin:$GOROOT/bin:$PATH
ENV LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-10.0/compat/
RUN go get -u github.com/LdDl/go-darknet \
&& go get -u github.com/disintegration/imaging
WORKDIR /darknet
COPY download_data.sh .
CMD ["/bin/bash"]

185
docker/Makefile.cpu Normal file
View File

@@ -0,0 +1,185 @@
GPU=0
CUDNN=0
CUDNN_HALF=0
OPENCV=0
AVX=1
OPENMP=1
LIBSO=1
ZED_CAMERA=0 # ZED SDK 3.0 and above
ZED_CAMERA_v2_8=0 # ZED SDK 2.X
# set GPU=1 and CUDNN=1 to speedup on GPU
# set CUDNN_HALF=1 to further speedup 3 x times (Mixed-precision on Tensor Cores) GPU: Volta, Xavier, Turing and higher
# set AVX=1 and OPENMP=1 to speedup on CPU (if error occurs then set AVX=0)
USE_CPP=0
DEBUG=0
ARCH= -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52] \
-gencode arch=compute_61,code=[sm_61,compute_61]
OS := $(shell uname)
# Tesla V100
# ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]
# GeForce RTX 2080 Ti, RTX 2080, RTX 2070, Quadro RTX 8000, Quadro RTX 6000, Quadro RTX 5000, Tesla T4, XNOR Tensor Cores
# ARCH= -gencode arch=compute_75,code=[sm_75,compute_75]
# Jetson XAVIER
# ARCH= -gencode arch=compute_72,code=[sm_72,compute_72]
# GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4
# ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61
# GP100/Tesla P100 - DGX-1
# ARCH= -gencode arch=compute_60,code=sm_60
# For Jetson TX1, Tegra X1, DRIVE CX, DRIVE PX - uncomment:
# ARCH= -gencode arch=compute_53,code=[sm_53,compute_53]
# For Jetson Tx2 or Drive-PX2 uncomment:
# ARCH= -gencode arch=compute_62,code=[sm_62,compute_62]
# VPATH=./src/
VPATH=./src/:./examples
SLIB=libdarknet.so
EXEC=darknet
OBJDIR=./obj/
ifeq ($(LIBSO), 1)
LIBNAMESO=libdarknet.so
APPNAMESO=uselib
endif
ifeq ($(USE_CPP), 1)
CC=g++
else
CC=gcc
endif
CPP=g++ -std=c++11
NVCC=nvcc
OPTS=-Ofast
LDFLAGS= -lm -pthread
COMMON= -Iinclude/ -I3rdparty/stb/include
CFLAGS=-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC
ifeq ($(DEBUG), 1)
#OPTS= -O0 -g
#OPTS= -Og -g
COMMON+= -DDEBUG
CFLAGS+= -DDEBUG
else
ifeq ($(AVX), 1)
CFLAGS+= -ffp-contract=fast -mavx -mavx2 -msse3 -msse4.1 -msse4.2 -msse4a
endif
endif
CFLAGS+=$(OPTS)
ifneq (,$(findstring MSYS_NT,$(OS)))
LDFLAGS+=-lws2_32
endif
ifeq ($(OPENCV), 1)
COMMON+= -DOPENCV
CFLAGS+= -DOPENCV
LDFLAGS+= `pkg-config --libs opencv4 2> /dev/null || pkg-config --libs opencv`
COMMON+= `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv`
endif
ifeq ($(OPENMP), 1)
CFLAGS+= -fopenmp
LDFLAGS+= -lgomp
endif
ifeq ($(GPU), 1)
COMMON+= -DGPU -I/usr/local/cuda/include/
CFLAGS+= -DGPU
ifeq ($(OS),Darwin) #MAC
LDFLAGS+= -L/usr/local/cuda/lib -lcuda -lcudart -lcublas -lcurand
else
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif
endif
ifeq ($(CUDNN), 1)
COMMON+= -DCUDNN
ifeq ($(OS),Darwin) #MAC
CFLAGS+= -DCUDNN -I/usr/local/cuda/include
LDFLAGS+= -L/usr/local/cuda/lib -lcudnn
else
CFLAGS+= -DCUDNN -I/usr/local/cudnn/include
LDFLAGS+= -L/usr/local/cudnn/lib64 -lcudnn
endif
endif
ifeq ($(CUDNN_HALF), 1)
COMMON+= -DCUDNN_HALF
CFLAGS+= -DCUDNN_HALF
ARCH+= -gencode arch=compute_70,code=[sm_70,compute_70]
endif
ifeq ($(ZED_CAMERA), 1)
CFLAGS+= -DZED_STEREO -I/usr/local/zed/include
ifeq ($(ZED_CAMERA_v2_8), 1)
LDFLAGS+= -L/usr/local/zed/lib -lsl_core -lsl_input -lsl_zed
#-lstdc++ -D_GLIBCXX_USE_CXX11_ABI=0
else
LDFLAGS+= -L/usr/local/zed/lib -lsl_zed
#-lstdc++ -D_GLIBCXX_USE_CXX11_ABI=0
endif
endif
OBJ=image_opencv.o http_stream.o gemm.o utils.o dark_cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o reorg_old_layer.o super.o voxel.o tree.o yolo_layer.o gaussian_yolo_layer.o upsample_layer.o lstm_layer.o conv_lstm_layer.o scale_channels_layer.o sam_layer.o
ifeq ($(GPU), 1)
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
endif
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile include/darknet.h
all: $(OBJDIR) backup results setchmod $(EXEC) $(LIBNAMESO) $(APPNAMESO)
ifeq ($(LIBSO), 1)
CFLAGS+= -fPIC
$(LIBNAMESO): $(OBJDIR) $(OBJS) include/yolo_v2_class.hpp src/yolo_v2_class.cpp
$(CPP) -shared -std=c++11 -fvisibility=hidden -DLIB_EXPORTS $(COMMON) $(CFLAGS) $(OBJS) src/yolo_v2_class.cpp -o $@ $(LDFLAGS)
$(APPNAMESO): $(LIBNAMESO) include/yolo_v2_class.hpp src/yolo_console_dll.cpp
$(CPP) -std=c++11 $(COMMON) $(CFLAGS) -o $@ src/yolo_console_dll.cpp $(LDFLAGS) -L ./ -l:$(LIBNAMESO)
endif
$(EXEC): $(OBJS)
$(CPP) -std=c++11 $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS)
$(OBJDIR)%.o: %.c $(DEPS)
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@
$(OBJDIR)%.o: %.cpp $(DEPS)
$(CPP) -std=c++11 $(COMMON) $(CFLAGS) -c $< -o $@
$(OBJDIR)%.o: %.cu $(DEPS)
$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
$(OBJDIR):
mkdir -p $(OBJDIR)
backup:
mkdir -p backup
results:
mkdir -p results
setchmod:
chmod +x *.sh
.PHONY: clean
clean:
rm -rf $(OBJS) $(EXEC) $(LIBNAMESO) $(APPNAMESO)

186
docker/Makefile.gpu Normal file
View File

@@ -0,0 +1,186 @@
GPU=1
CUDNN=1
CUDNN_HALF=0
OPENCV=0
AVX=0
OPENMP=0
LIBSO=1
ZED_CAMERA=0 # ZED SDK 3.0 and above
ZED_CAMERA_v2_8=0 # ZED SDK 2.X
# set GPU=1 and CUDNN=1 to speedup on GPU
# set CUDNN_HALF=1 to further speedup 3 x times (Mixed-precision on Tensor Cores) GPU: Volta, Xavier, Turing and higher
# set AVX=1 and OPENMP=1 to speedup on CPU (if error occurs then set AVX=0)
USE_CPP=0
DEBUG=0
ARCH= -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52] \
-gencode arch=compute_61,code=[sm_61,compute_61]
OS := $(shell uname)
# Tesla V100
# ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]
# GeForce RTX 2080 Ti, RTX 2080, RTX 2070, Quadro RTX 8000, Quadro RTX 6000, Quadro RTX 5000, Tesla T4, XNOR Tensor Cores
# ARCH= -gencode arch=compute_75,code=[sm_75,compute_75]
# Jetson XAVIER
# ARCH= -gencode arch=compute_72,code=[sm_72,compute_72]
# GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4
# ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61
# GP100/Tesla P100 - DGX-1
# ARCH= -gencode arch=compute_60,code=sm_60
# For Jetson TX1, Tegra X1, DRIVE CX, DRIVE PX - uncomment:
# ARCH= -gencode arch=compute_53,code=[sm_53,compute_53]
# For Jetson Tx2 or Drive-PX2 uncomment:
# ARCH= -gencode arch=compute_62,code=[sm_62,compute_62]
# VPATH=./src/
VPATH=./src/:./examples
SLIB=libdarknet.so
EXEC=darknet
OBJDIR=./obj/
ifeq ($(LIBSO), 1)
LIBNAMESO=libdarknet.so
APPNAMESO=uselib
endif
ifeq ($(USE_CPP), 1)
CC=g++
else
CC=gcc
endif
CPP=g++ -std=c++11
NVCC=nvcc
OPTS=-Ofast
LDFLAGS= -lm -pthread
COMMON= -Iinclude/ -I3rdparty/stb/include
CFLAGS=-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC
ifeq ($(DEBUG), 1)
#OPTS= -O0 -g
#OPTS= -Og -g
COMMON+= -DDEBUG
CFLAGS+= -DDEBUG
else
ifeq ($(AVX), 1)
CFLAGS+= -ffp-contract=fast -mavx -mavx2 -msse3 -msse4.1 -msse4.2 -msse4a
endif
endif
CFLAGS+=$(OPTS)
ifneq (,$(findstring MSYS_NT,$(OS)))
LDFLAGS+=-lws2_32
endif
ifeq ($(OPENCV), 1)
COMMON+= -DOPENCV
CFLAGS+= -DOPENCV
LDFLAGS+= `pkg-config --libs opencv4 2> /dev/null || pkg-config --libs opencv`
COMMON+= `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv`
endif
ifeq ($(OPENMP), 1)
CFLAGS+= -fopenmp
LDFLAGS+= -lgomp
endif
ifeq ($(GPU), 1)
COMMON+= -DGPU -I/usr/local/cuda/include/
CFLAGS+= -DGPU
ifeq ($(OS),Darwin) #MAC
LDFLAGS+= -L/usr/local/cuda/lib -lcuda -lcudart -lcublas -lcurand
else
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif
endif
ifeq ($(CUDNN), 1)
COMMON+= -DCUDNN
ifeq ($(OS),Darwin) #MAC
CFLAGS+= -DCUDNN -I/usr/local/cuda/include
LDFLAGS+= -L/usr/local/cuda/lib -lcudnn
else
CFLAGS+= -DCUDNN -I/usr/local/cudnn/include
LDFLAGS+= -L/usr/local/cudnn/lib64 -lcudnn
endif
endif
ifeq ($(CUDNN_HALF), 1)
COMMON+= -DCUDNN_HALF
CFLAGS+= -DCUDNN_HALF
ARCH+= -gencode arch=compute_70,code=[sm_70,compute_70]
endif
ifeq ($(ZED_CAMERA), 1)
CFLAGS+= -DZED_STEREO -I/usr/local/zed/include
ifeq ($(ZED_CAMERA_v2_8), 1)
LDFLAGS+= -L/usr/local/zed/lib -lsl_core -lsl_input -lsl_zed
#-lstdc++ -D_GLIBCXX_USE_CXX11_ABI=0
else
LDFLAGS+= -L/usr/local/zed/lib -lsl_zed
#-lstdc++ -D_GLIBCXX_USE_CXX11_ABI=0
endif
endif
OBJ=image_opencv.o http_stream.o gemm.o utils.o dark_cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o reorg_old_layer.o super.o voxel.o tree.o yolo_layer.o gaussian_yolo_layer.o upsample_layer.o lstm_layer.o conv_lstm_layer.o scale_channels_layer.o sam_layer.o
ifeq ($(GPU), 1)
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
endif
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile include/darknet.h
all: $(OBJDIR) backup results setchmod $(EXEC) $(LIBNAMESO) $(APPNAMESO)
ifeq ($(LIBSO), 1)
CFLAGS+= -fPIC
$(LIBNAMESO): $(OBJDIR) $(OBJS) include/yolo_v2_class.hpp src/yolo_v2_class.cpp
$(CPP) -shared -std=c++11 -fvisibility=hidden -DLIB_EXPORTS $(COMMON) $(CFLAGS) $(OBJS) src/yolo_v2_class.cpp -o $@ $(LDFLAGS)
$(APPNAMESO): $(LIBNAMESO) include/yolo_v2_class.hpp src/yolo_console_dll.cpp
$(CPP) -std=c++11 $(COMMON) $(CFLAGS) -o $@ src/yolo_console_dll.cpp $(LDFLAGS) -L ./ -l:$(LIBNAMESO)
endif
$(EXEC): $(OBJS)
$(CPP) -std=c++11 $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS)
$(OBJDIR)%.o: %.c $(DEPS)
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@
$(OBJDIR)%.o: %.cpp $(DEPS)
$(CPP) -std=c++11 $(COMMON) $(CFLAGS) -c $< -o $@
$(OBJDIR)%.o: %.cu $(DEPS)
$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
$(OBJDIR):
mkdir -p $(OBJDIR)
backup:
mkdir -p backup
results:
mkdir -p results
setchmod:
chmod +x *.sh
.PHONY: clean
clean:
rm -rf $(OBJS) $(EXEC) $(LIBNAMESO) $(APPNAMESO)

32
docker/docker-compose.yml Normal file
View File

@@ -0,0 +1,32 @@
---
version: '3.7'
services:
sidekiq: &darknet_base
container_name: ${NAMESPACE}-sidekiq
build:
context: .
dockerfile: Dockerfile
image: go-darknet:latest
working_dir: /darknet
volumes:
- darknet-data:/darknet/models
command: /darknet/download_data.sh
darknet:
<<: *darknet_base
container_name: ${NAMESPACE}-api
ports:
- "9003:9003"
restart: unless-stopped
depends_on:
- sidekiq
command: ["/bin/bash"]
# command: ["darknet-server"]
volumes:
darknet-data:
driver_opts:
type: none
o: bind
device: ${PWD}/models

10
docker/download_data.sh Executable file
View File

@@ -0,0 +1,10 @@
#!/bin/sh
# set -x
# set -e
wget -nc --output-document=sample.jpg https://cdn-images-1.medium.com/max/800/1*EYFejGUjvjPcc4PZTwoufw.jpeg
wget -nc --output-document=./models/coco.names https://raw.githubusercontent.com/AlexeyAB/darknet/master/data/coco.names
wget -nc --output-document=./models/yolov3.cfg https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3.cfg
sed -i -e "\$anames = coco.names" ./models/yolov3.cfg
wget -nc --output-document=./models/yolov3.weights https://pjreddie.com/media/files/yolov3.weights

2
docker/models/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
*
!.gitignore

View File

@@ -1,34 +0,0 @@
# Example Go application using go-darknet
This is an example Go application which uses go-darknet.
## Install
```shell
go get github.com/LdDl/go-darknet
go install github.com/LdDl/go-darknet/example
# Alternatively
go build github.com/LdDl/go-darknet/example
```
An executable named `example` should be in your `$GOPATH/bin`, if using
`go install`; otherwise it will be in your current working directory (`$PWD`),
if using `go build`.
## Run
```shell
$GOPATH/bin/example
```
or
```go
go run main.go -configFile=yolov3-320.cfg -dataConfigFile=coco.data -imageFile=sample.jpg -weightsFile=yolov3.weights
```
Please ensure that `libdarknet.so` is in your `$LD_LIBRARY_PATH`.
## Notes
Note that the bounding boxes' values are ratios. To get the actual values, use
the ratios and multiply with either the image's width or height, depending on
which ratio is used.

View File

@@ -0,0 +1,54 @@
# Example Go application using go-darknet
This is an example Go application which uses go-darknet.
## Run
Navigate to example folder:
```shell
cd $GOPATH/github.com/LdDl/go-darknet/example/base_example
```
Download dataset (sample of image, coco.names, yolov3.cfg, yolov3.weights).
```shell
./download_data_v3.sh
```
Note: you don't need *coco.data* file anymore, because script below does insert *coco.names* into 'names' filed in *yolov3.cfg* file (so AlexeyAB's fork can deal with it properly)
So last rows in yolov3.cfg file will look like:
```bash
......
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
names = coco.names # this is path to coco.names file
```
Build and run program
```
go build main.go && ./main --configFile=yolov3.cfg --weightsFile=yolov3.weights --imageFile=sample.jpg
```
Output should be something like this:
```shell
truck (7): 49.5197% | start point: (0,136) | end point: (85, 311)
car (2): 36.3747% | start point: (95,152) | end point: (186, 283)
truck (7): 48.4384% | start point: (95,152) | end point: (186, 283)
truck (7): 45.6590% | start point: (694,178) | end point: (798, 310)
car (2): 76.8379% | start point: (1,145) | end point: (84, 324)
truck (7): 25.5731% | start point: (107,89) | end point: (215, 263)
car (2): 99.8783% | start point: (511,185) | end point: (748, 328)
car (2): 99.8194% | start point: (261,189) | end point: (427, 322)
car (2): 99.6408% | start point: (426,197) | end point: (539, 311)
car (2): 74.5610% | start point: (692,186) | end point: (796, 316)
car (2): 72.8053% | start point: (388,206) | end point: (437, 276)
bicycle (1): 72.2932% | start point: (178,270) | end point: (268, 406)
person (0): 97.3026% | start point: (143,135) | end point: (268, 343)
```

View File

@@ -7,9 +7,10 @@ import (
"image" "image"
"image/jpeg" "image/jpeg"
"log" "log"
"math"
"os" "os"
darknet "github.com/LdDl/go-darknet" darknet "github.com/LdDl/go-darknet"
"github.com/disintegration/imaging"
) )
var configFile = flag.String("configFile", "", var configFile = flag.String("configFile", "",
@@ -59,13 +60,13 @@ func main() {
if err != nil { if err != nil {
panic(err.Error()) panic(err.Error())
} }
defer imgDarknet.Close()
dr, err := n.Detect(imgDarknet) dr, err := n.Detect(imgDarknet)
if err != nil { if err != nil {
printError(err) printError(err)
return return
} }
imgDarknet.Close()
log.Println("Network-only time taken:", dr.NetworkOnlyTimeTaken) log.Println("Network-only time taken:", dr.NetworkOnlyTimeTaken)
log.Println("Overall time taken:", dr.OverallTimeTaken, len(dr.Detections)) log.Println("Overall time taken:", dr.OverallTimeTaken, len(dr.Detections))
@@ -78,8 +79,20 @@ func main() {
bBox.StartPoint.X, bBox.StartPoint.Y, bBox.StartPoint.X, bBox.StartPoint.Y,
bBox.EndPoint.X, bBox.EndPoint.Y, bBox.EndPoint.X, bBox.EndPoint.Y,
) )
// Uncomment code below if you want save cropped objects to files
// minX, minY := float64(bBox.StartPoint.X), float64(bBox.StartPoint.Y)
// maxX, maxY := float64(bBox.EndPoint.X), float64(bBox.EndPoint.Y)
// rect := image.Rect(round(minX), round(minY), round(maxX), round(maxY))
// err := saveToFile(src, rect, fmt.Sprintf("crop_%d.jpeg", i))
// if err != nil {
// fmt.Println(err)
// return
// }
} }
} }
n.Close()
} }
func imageToBytes(img image.Image) ([]byte, error) { func imageToBytes(img image.Image) ([]byte, error) {
@@ -87,3 +100,24 @@ func imageToBytes(img image.Image) ([]byte, error) {
err := jpeg.Encode(buf, img, nil) err := jpeg.Encode(buf, img, nil)
return buf.Bytes(), err return buf.Bytes(), err
} }
func round(v float64) int {
if v >= 0 {
return int(math.Floor(v + 0.5))
}
return int(math.Ceil(v - 0.5))
}
func saveToFile(imgSrc image.Image, bbox image.Rectangle, fname string) error {
rectcropimg := imaging.Crop(imgSrc, bbox)
f, err := os.Create(fname)
if err != nil {
return err
}
defer f.Close()
err = jpeg.Encode(f, rectcropimg, nil)
if err != nil {
return err
}
return nil
}

View File

@@ -1,5 +1,5 @@
wget --output-document=sample.jpg https://cdn-images-1.medium.com/max/800/1*EYFejGUjvjPcc4PZTwoufw.jpeg wget --output-document=sample.jpg https://cdn-images-1.medium.com/max/800/1*EYFejGUjvjPcc4PZTwoufw.jpeg
wget --output-document=coco.names https://raw.githubusercontent.com/AlexeyAB/darknet/master/data/coco.names wget --output-document=coco.names https://raw.githubusercontent.com/AlexeyAB/darknet/master/data/coco.names
wget --output-document=yolov3.cfg https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3.cfg wget --output-document=yolov4.cfg https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg
sed -i -e "\$anames = coco.names" yolov3.cfg sed -i -e "\$anames = coco.names" yolov4.cfg
wget --output-document=yolov3.weights https://pjreddie.com/media/files/yolov3.weights wget --output-document=yolov4.weights https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights

5
example/download_data_v3.sh Executable file
View File

@@ -0,0 +1,5 @@
wget --output-document=sample.jpg https://cdn-images-1.medium.com/max/800/1*EYFejGUjvjPcc4PZTwoufw.jpeg
wget --output-document=coco.names https://raw.githubusercontent.com/AlexeyAB/darknet/master/data/coco.names
wget --output-document=yolov3.cfg https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3.cfg
sed -i -e "\$anames = coco.names" yolov3.cfg
wget --output-document=yolov3.weights https://pjreddie.com/media/files/yolov3.weights

View File

@@ -0,0 +1,221 @@
# Example Go application using go-darknet and REST
This is an example Go server application (in terms of REST) which uses go-darknet.
## Run
Navigate to example folder:
```shell
cd $GOPATH/github.com/LdDl/go-darknet/example/rest_example
```
Download dataset (sample of image, coco.names, yolov3.cfg, yolov3.weights).
```shell
./download_data_v3.sh
```
Note: you don't need *coco.data* file anymore, because script below does insert *coco.names* into 'names' filed in *yolov3.cfg* file (so AlexeyAB's fork can deal with it properly)
So last rows in yolov3.cfg file will look like:
```bash
......
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
names = coco.names # this is path to coco.names file
```
Build and run program
```
go build main.go && ./main --configFile=yolov3.cfg --weightsFile=yolov3.weights --port 8090
```
After server started check if REST-requests works. We provide cURL-based example
```shell
curl -F 'image=@sample.jpg' 'http://localhost:8090/detect_objects'
```
Servers response should be something like this:
```json
{
"net_time": "43.269289ms",
"overall_time": "43.551604ms",
"num_detections": 44,
"detections": [
{
"class_id": 7,
"class_name": "truck",
"probability": 49.51231,
"start_point": {
"x": 0,
"y": 136
},
"end_point": {
"x": 85,
"y": 311
}
},
{
"class_id": 2,
"class_name": "car",
"probability": 36.36933,
"start_point": {
"x": 95,
"y": 152
},
"end_point": {
"x": 186,
"y": 283
}
},
{
"class_id": 7,
"class_name": "truck",
"probability": 48.417683,
"start_point": {
"x": 95,
"y": 152
},
"end_point": {
"x": 186,
"y": 283
}
},
{
"class_id": 7,
"class_name": "truck",
"probability": 45.652023,
"start_point": {
"x": 694,
"y": 178
},
"end_point": {
"x": 798,
"y": 310
}
},
{
"class_id": 2,
"class_name": "car",
"probability": 76.8402,
"start_point": {
"x": 1,
"y": 145
},
"end_point": {
"x": 84,
"y": 324
}
},
{
"class_id": 7,
"class_name": "truck",
"probability": 25.592052,
"start_point": {
"x": 107,
"y": 89
},
"end_point": {
"x": 215,
"y": 263
}
},
{
"class_id": 2,
"class_name": "car",
"probability": 99.87823,
"start_point": {
"x": 511,
"y": 185
},
"end_point": {
"x": 748,
"y": 328
}
},
{
"class_id": 2,
"class_name": "car",
"probability": 99.819336,
"start_point": {
"x": 261,
"y": 189
},
"end_point": {
"x": 427,
"y": 322
}
},
{
"class_id": 2,
"class_name": "car",
"probability": 99.64055,
"start_point": {
"x": 426,
"y": 197
},
"end_point": {
"x": 539,
"y": 311
}
},
{
"class_id": 2,
"class_name": "car",
"probability": 74.56263,
"start_point": {
"x": 692,
"y": 186
},
"end_point": {
"x": 796,
"y": 316
}
},
{
"class_id": 2,
"class_name": "car",
"probability": 72.79756,
"start_point": {
"x": 388,
"y": 206
},
"end_point": {
"x": 437,
"y": 276
}
},
{
"class_id": 1,
"class_name": "bicycle",
"probability": 72.27595,
"start_point": {
"x": 178,
"y": 270
},
"end_point": {
"x": 268,
"y": 406
}
},
{
"class_id": 0,
"class_name": "person",
"probability": 97.30075,
"start_point": {
"x": 143,
"y": 135
},
"end_point": {
"x": 268,
"y": 343
}
}
]
}
```

View File

@@ -0,0 +1,140 @@
package main
import (
"bytes"
"encoding/json"
"flag"
"fmt"
"image"
_ "image/jpeg"
"io/ioutil"
"log"
"net/http"
"github.com/LdDl/go-darknet"
)
var configFile = flag.String("configFile", "",
"Path to network layer configuration file. Example: cfg/yolov3.cfg")
var weightsFile = flag.String("weightsFile", "",
"Path to weights file. Example: yolov3.weights")
var serverPort = flag.Int("port", 8090,
"Listening port")
func main() {
flag.Parse()
if *configFile == "" || *weightsFile == "" {
flag.Usage()
return
}
n := darknet.YOLONetwork{
GPUDeviceIndex: 0,
NetworkConfigurationFile: *configFile,
WeightsFile: *weightsFile,
Threshold: .25,
}
if err := n.Init(); err != nil {
log.Println(err)
return
}
defer n.Close()
http.HandleFunc("/detect_objects", detectObjects(&n))
http.ListenAndServe(fmt.Sprintf(":%d", *serverPort), nil)
}
// DarknetResp Response
type DarknetResp struct {
NetTime string `json:"net_time"`
OverallTime string `json:"overall_time"`
Detections []*DarknetDetection `json:"detections"`
}
// DarknetDetection Information about single detection
type DarknetDetection struct {
ClassID int `json:"class_id"`
ClassName string `json:"class_name"`
Probability float32 `json:"probability"`
StartPoint *DarknetPoint `json:"start_point"`
EndPoint *DarknetPoint `json:"end_point"`
}
// DarknetPoint image.Image point
type DarknetPoint struct {
X int `json:"x"`
Y int `json:"y"`
}
func detectObjects(n *darknet.YOLONetwork) func(w http.ResponseWriter, req *http.Request) {
return func(w http.ResponseWriter, req *http.Request) {
// Restrict file size up to 10mb
req.ParseMultipartForm(10 << 20)
file, _, err := req.FormFile("image")
if err != nil {
fmt.Fprintf(w, fmt.Sprintf("Error reading FormFile: %s", err.Error()))
return
}
defer file.Close()
fileBytes, err := ioutil.ReadAll(file)
if err != nil {
fmt.Fprintf(w, fmt.Sprintf("Error reading bytes: %s", err.Error()))
return
}
imgSrc, _, err := image.Decode(bytes.NewReader(fileBytes))
if err != nil {
fmt.Fprintf(w, fmt.Sprintf("Error decoding bytes to image: %s", err.Error()))
return
}
imgDarknet, err := darknet.Image2Float32(imgSrc)
if err != nil {
fmt.Fprintf(w, fmt.Sprintf("Error converting image.Image to darknet.DarknetImage: %s", err.Error()))
return
}
defer imgDarknet.Close()
dr, err := n.Detect(imgDarknet)
if err != nil {
fmt.Fprintf(w, fmt.Sprintf("Error detecting objects: %s", err.Error()))
return
}
resp := DarknetResp{
NetTime: fmt.Sprintf("%v", dr.NetworkOnlyTimeTaken),
OverallTime: fmt.Sprintf("%v", dr.OverallTimeTaken),
Detections: []*DarknetDetection{},
}
for _, d := range dr.Detections {
for i := range d.ClassIDs {
bBox := d.BoundingBox
resp.Detections = append(resp.Detections, &DarknetDetection{
ClassID: d.ClassIDs[i],
ClassName: d.ClassNames[i],
Probability: d.Probabilities[i],
StartPoint: &DarknetPoint{
X: bBox.StartPoint.X,
Y: bBox.StartPoint.Y,
},
EndPoint: &DarknetPoint{
X: bBox.EndPoint.X,
Y: bBox.EndPoint.Y,
},
})
}
}
respBytes, err := json.Marshal(resp)
if err != nil {
fmt.Fprintf(w, fmt.Sprintf("Error encoding response: %s", err.Error()))
return
}
fmt.Fprintf(w, string(respBytes))
}
}

BIN
example/sample.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 134 KiB

View File

@@ -14,12 +14,14 @@ import (
type DarknetImage struct { type DarknetImage struct {
Width int Width int
Height int Height int
ans []float32
image C.image image C.image
} }
// Close and release resources. // Close and release resources.
func (img *DarknetImage) Close() error { func (img *DarknetImage) Close() error {
C.free_image(img.image) C.free_image(img.image)
img.ans = nil
return nil return nil
} }
@@ -29,10 +31,10 @@ func imgTofloat32(src image.Image) []float32 {
width, height := bounds.Max.X, bounds.Max.Y width, height := bounds.Max.X, bounds.Max.Y
srcRGBA := image.NewRGBA(src.Bounds()) srcRGBA := image.NewRGBA(src.Bounds())
draw.Copy(srcRGBA, image.Point{}, src, src.Bounds(), draw.Src, nil) draw.Copy(srcRGBA, image.Point{}, src, src.Bounds(), draw.Src, nil)
ans := []float32{}
red := []float32{} red := make([]float32, 0, width*height)
green := []float32{} green := make([]float32, 0, width*height)
blue := []float32{} blue := make([]float32, 0, width*height)
for y := 0; y < height; y++ { for y := 0; y < height; y++ {
for x := 0; x < width; x++ { for x := 0; x < width; x++ {
idxSource := (y*width + x) * 4 idxSource := (y*width + x) * 4
@@ -43,22 +45,40 @@ func imgTofloat32(src image.Image) []float32 {
blue = append(blue, bpix) blue = append(blue, bpix)
} }
} }
ans = append(ans, red...) srcRGBA = nil
ans = append(ans, green...)
ans = append(ans, blue...) ans := make([]float32, len(red)+len(green)+len(blue))
copy(ans[:len(red)], red)
copy(ans[len(red):len(red)+len(green)], green)
copy(ans[len(red)+len(green):], blue)
red = nil
green = nil
blue = nil
return ans return ans
} }
// Image2Float32 Returns []float32 representation of image.Image // Image2Float32 Returns []float32 representation of image.Image
func Image2Float32(img image.Image) (*DarknetImage, error) { func Image2Float32(img image.Image) (*DarknetImage, error) {
ans := imgTofloat32(img) // ans := imgTofloat32(img)
width := img.Bounds().Dx() width := img.Bounds().Dx()
height := img.Bounds().Dy() height := img.Bounds().Dy()
imgDarknet := &DarknetImage{ imgDarknet := &DarknetImage{
Width: width, Width: width,
Height: height, Height: height,
ans: imgTofloat32(img),
image: C.make_image(C.int(width), C.int(height), 3), image: C.make_image(C.int(width), C.int(height), 3),
} }
C.fill_image_f32(&imgDarknet.image, C.int(width), C.int(height), 3, (*C.float)(unsafe.Pointer(&ans[0]))) C.fill_image_f32(&imgDarknet.image, C.int(width), C.int(height), 3, (*C.float)(unsafe.Pointer(&imgDarknet.ans[0])))
return imgDarknet, nil
}
// Float32ToDarknetImage Converts []float32 to darknet image
func Float32ToDarknetImage(flatten []float32, width, height int) (*DarknetImage, error) {
imgDarknet := &DarknetImage{
Width: width,
Height: height,
image: C.make_image(C.int(width), C.int(height), 3),
}
C.fill_image_f32(&imgDarknet.image, C.int(width), C.int(height), 3, (*C.float)(unsafe.Pointer(&flatten[0])))
return imgDarknet, nil return imgDarknet, nil
} }

View File

@@ -14,10 +14,9 @@ struct network_box_result perform_network_detect(network *n, image *img, int cla
sized = resize_image(*img, n->w, n->h); sized = resize_image(*img, n->w, n->h);
} }
struct network_box_result result = { NULL }; struct network_box_result result = { NULL };
float *X = sized.data; // mleak at network_predict(), get_network_boxes() and network_predict_ptr()?
network_predict_ptr(n, X); network_predict_ptr(n, sized.data);
int nboxes = 0; int nboxes = 0;
detection *dets = get_network_boxes(n, img->w, img->h, thresh, hier_thresh, 0, 1, &nboxes, letter_box);
result.detections = get_network_boxes(n, img->w, img->h, thresh, hier_thresh, 0, 1, &result.detections_len, letter_box); result.detections = get_network_boxes(n, img->w, img->h, thresh, hier_thresh, 0, 1, &result.detections_len, letter_box);
if (nms) { if (nms) {
do_nms_sort(result.detections, result.detections_len, classes, nms); do_nms_sort(result.detections, result.detections_len, classes, nms);

View File

@@ -58,7 +58,7 @@ func (n *YOLONetwork) Close() error {
if n.cNet == nil { if n.cNet == nil {
return errNetworkNotInit return errNetworkNotInit
} }
C.free_network(*n.cNet) C.free_network_ptr(n.cNet)
n.cNet = nil n.cNet = nil
return nil return nil
} }
@@ -71,8 +71,8 @@ func (n *YOLONetwork) Detect(img *DarknetImage) (*DetectionResult, error) {
startTime := time.Now() startTime := time.Now()
result := C.perform_network_detect(n.cNet, &img.image, C.int(n.Classes), C.float(n.Threshold), C.float(n.hierarchalThreshold), C.float(n.nms), C.int(0)) result := C.perform_network_detect(n.cNet, &img.image, C.int(n.Classes), C.float(n.Threshold), C.float(n.hierarchalThreshold), C.float(n.nms), C.int(0))
endTime := time.Now() endTime := time.Now()
defer C.free_detections(result.detections, result.detections_len)
ds := makeDetections(img, result.detections, int(result.detections_len), n.Threshold, n.Classes, n.ClassNames) ds := makeDetections(img, result.detections, int(result.detections_len), n.Threshold, n.Classes, n.ClassNames)
C.free_detections(result.detections, result.detections_len)
endTimeOverall := time.Now() endTimeOverall := time.Now()
out := DetectionResult{ out := DetectionResult{
Detections: ds, Detections: ds,