Files
frigate-rockchip/frigate/object_detection.py
blakeblackshear c406fda288 fixes
2019-03-19 06:29:58 -05:00

102 lines
4.4 KiB
Python

import datetime
import cv2
import numpy as np
from edgetpu.detection.engine import DetectionEngine
from . util import tonumpyarray
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
def detect_objects(prepped_frame_array, prepped_frame_time, prepped_frame_lock,
prepped_frame_ready, prepped_frame_box, object_queue, debug):
prepped_frame_np = tonumpyarray(prepped_frame_array)
# Load the edgetpu engine and labels
engine = DetectionEngine(PATH_TO_CKPT)
labels = ReadLabelFile(PATH_TO_LABELS)
frame_time = 0.0
region_box = [0,0,0,0]
while True:
with prepped_frame_ready:
prepped_frame_ready.wait()
# make a copy of the cropped frame
with prepped_frame_lock:
prepped_frame_copy = prepped_frame_np.copy()
frame_time = prepped_frame_time.value
region_box[:] = prepped_frame_box
# Actual detection.
objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
# print(engine.get_inference_time())
# put detected objects in the queue
if objects:
# assumes square
region_size = region_box[2]-region_box[0]
for obj in objects:
box = obj.bounding_box.flatten().tolist()
object_queue.put({
'frame_time': frame_time,
'name': str(labels[obj.label_id]),
'score': float(obj.score),
'xmin': int((box[0] * region_size) + region_box[0]),
'ymin': int((box[1] * region_size) + region_box[1]),
'xmax': int((box[2] * region_size) + region_box[0]),
'ymax': int((box[3] * region_size) + region_box[1])
})
def prep_for_detection(shared_whole_frame_array, shared_frame_time, frame_lock, frame_ready,
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
prepped_frame_array, prepped_frame_time, prepped_frame_ready, prepped_frame_lock,
prepped_frame_box):
# shape shared input array into frame for processing
shared_whole_frame = tonumpyarray(shared_whole_frame_array).reshape(frame_shape)
shared_prepped_frame = tonumpyarray(prepped_frame_array).reshape((1,300,300,3))
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# wait until motion is detected
motion_detected.wait()
with frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a new frame
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
frame_ready.wait()
# make a copy of the cropped frame
with frame_lock:
cropped_frame = shared_whole_frame[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
frame_time = shared_frame_time.value
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# Resize to 300x300 if needed
if cropped_frame_rgb.shape != (300, 300, 3):
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
# copy the prepped frame to the shared output array
with prepped_frame_lock:
shared_prepped_frame[:] = frame_expanded
prepped_frame_time = frame_time
prepped_frame_box[:] = [region_x_offset, region_y_offset, region_x_offset+region_size, region_y_offset+region_size]
# signal that a prepped frame is ready
with prepped_frame_ready:
prepped_frame_ready.notify_all()