mirror of
https://github.com/MarcA711/frigate-rockchip.git
synced 2025-10-09 18:50:21 +08:00
fix for queue size growing too large
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
import datetime
|
||||
import time
|
||||
import cv2
|
||||
import threading
|
||||
import numpy as np
|
||||
@@ -33,7 +34,6 @@ def detect_objects(prepped_frame_array, prepped_frame_time,
|
||||
region_box = [0,0,0]
|
||||
while True:
|
||||
# wait until a frame is ready
|
||||
prepped_frame_grabbed.clear()
|
||||
prepped_frame_ready.wait()
|
||||
|
||||
prepped_frame_copy = prepped_frame_np.copy()
|
||||
@@ -41,10 +41,13 @@ def detect_objects(prepped_frame_array, prepped_frame_time,
|
||||
region_box[:] = prepped_frame_box
|
||||
|
||||
prepped_frame_grabbed.set()
|
||||
# print("Grabbed " + str(region_box[1]) + "," + str(region_box[2]))
|
||||
|
||||
# Actual detection.
|
||||
objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
||||
# print(engine.get_inference_time())
|
||||
# time.sleep(0.1)
|
||||
# objects = []
|
||||
print(engine.get_inference_time())
|
||||
# put detected objects in the queue
|
||||
if objects:
|
||||
for obj in objects:
|
||||
@@ -90,14 +93,16 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
# process queue...
|
||||
while True:
|
||||
frame = self.prepped_frame_queue.get()
|
||||
print(self.prepped_frame_queue.qsize())
|
||||
# print(self.prepped_frame_queue.qsize())
|
||||
prepped_frame_np[:] = frame['frame']
|
||||
self.prepped_frame_time.value = frame['frame_time']
|
||||
self.prepped_frame_box[0] = frame['region_size']
|
||||
self.prepped_frame_box[1] = frame['region_x_offset']
|
||||
self.prepped_frame_box[2] = frame['region_y_offset']
|
||||
# print("Passed " + str(frame['region_x_offset']) + "," + str(frame['region_x_offset']))
|
||||
self.prepped_frame_ready.set()
|
||||
self.prepped_frame_grabbed.wait()
|
||||
self.prepped_frame_grabbed.clear()
|
||||
self.prepped_frame_ready.clear()
|
||||
|
||||
|
||||
@@ -145,11 +150,15 @@ class FramePrepper(threading.Thread):
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
|
||||
|
||||
# print("Prepped frame at " + str(self.region_x_offset) + "," + str(self.region_y_offset))
|
||||
# add the frame to the queue
|
||||
self.prepped_frame_queue.put({
|
||||
'frame_time': frame_time,
|
||||
'frame': frame_expanded.flatten().copy(),
|
||||
'region_size': self.region_size,
|
||||
'region_x_offset': self.region_x_offset,
|
||||
'region_y_offset': self.region_y_offset
|
||||
})
|
||||
if not self.prepped_frame_queue.full():
|
||||
self.prepped_frame_queue.put({
|
||||
'frame_time': frame_time,
|
||||
'frame': frame_expanded.flatten().copy(),
|
||||
'region_size': self.region_size,
|
||||
'region_x_offset': self.region_x_offset,
|
||||
'region_y_offset': self.region_y_offset
|
||||
})
|
||||
# else:
|
||||
# print("queue full. moving on")
|
||||
|
Reference in New Issue
Block a user