mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 04:26:37 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			4588 lines
		
	
	
		
			148 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4588 lines
		
	
	
		
			148 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2019 Eugene Lyapustin
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * 360 video conversion filter.
 | |
|  * Principle of operation:
 | |
|  *
 | |
|  * (for each pixel in output frame)
 | |
|  * 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j)
 | |
|  * 2) Apply 360 operations (rotation, mirror) to (x, y, z)
 | |
|  * 3) Calculate pixel position (u, v) in input frame
 | |
|  * 4) Calculate interpolation window and weight for each pixel
 | |
|  *
 | |
|  * (for each frame)
 | |
|  * 5) Remap input frame to output frame using precalculated data
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| #include "libavutil/avassert.h"
 | |
| #include "libavutil/imgutils.h"
 | |
| #include "libavutil/pixdesc.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "avfilter.h"
 | |
| #include "formats.h"
 | |
| #include "internal.h"
 | |
| #include "video.h"
 | |
| #include "v360.h"
 | |
| 
 | |
| typedef struct ThreadData {
 | |
|     AVFrame *in;
 | |
|     AVFrame *out;
 | |
| } ThreadData;
 | |
| 
 | |
| #define OFFSET(x) offsetof(V360Context, x)
 | |
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
 | |
| #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
 | |
| 
 | |
| static const AVOption v360_options[] = {
 | |
|     {     "input", "set input projection",              OFFSET(in), AV_OPT_TYPE_INT,    {.i64=EQUIRECTANGULAR}, 0,    NB_PROJECTIONS-1, FLAGS, "in" },
 | |
|     {         "e", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "in" },
 | |
|     {  "equirect", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "in" },
 | |
|     {      "c3x2", "cubemap 3x2",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_3_2},     0,                   0, FLAGS, "in" },
 | |
|     {      "c6x1", "cubemap 6x1",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_6_1},     0,                   0, FLAGS, "in" },
 | |
|     {       "eac", "equi-angular cubemap",                       0, AV_OPT_TYPE_CONST,  {.i64=EQUIANGULAR},     0,                   0, FLAGS, "in" },
 | |
|     {  "dfisheye", "dual fisheye",                               0, AV_OPT_TYPE_CONST,  {.i64=DUAL_FISHEYE},    0,                   0, FLAGS, "in" },
 | |
|     {      "flat", "regular video",                              0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "in" },
 | |
|     {"rectilinear", "regular video",                             0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "in" },
 | |
|     {  "gnomonic", "regular video",                              0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "in" },
 | |
|     {    "barrel", "barrel facebook's 360 format",               0, AV_OPT_TYPE_CONST,  {.i64=BARREL},          0,                   0, FLAGS, "in" },
 | |
|     {        "fb", "barrel facebook's 360 format",               0, AV_OPT_TYPE_CONST,  {.i64=BARREL},          0,                   0, FLAGS, "in" },
 | |
|     {      "c1x6", "cubemap 1x6",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_1_6},     0,                   0, FLAGS, "in" },
 | |
|     {        "sg", "stereographic",                              0, AV_OPT_TYPE_CONST,  {.i64=STEREOGRAPHIC},   0,                   0, FLAGS, "in" },
 | |
|     {  "mercator", "mercator",                                   0, AV_OPT_TYPE_CONST,  {.i64=MERCATOR},        0,                   0, FLAGS, "in" },
 | |
|     {      "ball", "ball",                                       0, AV_OPT_TYPE_CONST,  {.i64=BALL},            0,                   0, FLAGS, "in" },
 | |
|     {    "hammer", "hammer",                                     0, AV_OPT_TYPE_CONST,  {.i64=HAMMER},          0,                   0, FLAGS, "in" },
 | |
|     {"sinusoidal", "sinusoidal",                                 0, AV_OPT_TYPE_CONST,  {.i64=SINUSOIDAL},      0,                   0, FLAGS, "in" },
 | |
|     {   "fisheye", "fisheye",                                    0, AV_OPT_TYPE_CONST,  {.i64=FISHEYE},         0,                   0, FLAGS, "in" },
 | |
|     {   "pannini", "pannini",                                    0, AV_OPT_TYPE_CONST,  {.i64=PANNINI},         0,                   0, FLAGS, "in" },
 | |
|     {"cylindrical", "cylindrical",                               0, AV_OPT_TYPE_CONST,  {.i64=CYLINDRICAL},     0,                   0, FLAGS, "in" },
 | |
|     {"tetrahedron", "tetrahedron",                               0, AV_OPT_TYPE_CONST,  {.i64=TETRAHEDRON},     0,                   0, FLAGS, "in" },
 | |
|     {"barrelsplit", "barrel split facebook's 360 format",        0, AV_OPT_TYPE_CONST,  {.i64=BARREL_SPLIT},    0,                   0, FLAGS, "in" },
 | |
|     {       "tsp", "truncated square pyramid",                   0, AV_OPT_TYPE_CONST,  {.i64=TSPYRAMID},       0,                   0, FLAGS, "in" },
 | |
|     { "hequirect", "half equirectangular",                       0, AV_OPT_TYPE_CONST,  {.i64=HEQUIRECTANGULAR},0,                   0, FLAGS, "in" },
 | |
|     {        "he", "half equirectangular",                       0, AV_OPT_TYPE_CONST,  {.i64=HEQUIRECTANGULAR},0,                   0, FLAGS, "in" },
 | |
|     { "equisolid", "equisolid",                                  0, AV_OPT_TYPE_CONST,  {.i64=EQUISOLID},       0,                   0, FLAGS, "in" },
 | |
|     {        "og", "orthographic",                               0, AV_OPT_TYPE_CONST,  {.i64=ORTHOGRAPHIC},    0,                   0, FLAGS, "in" },
 | |
|     {    "output", "set output projection",            OFFSET(out), AV_OPT_TYPE_INT,    {.i64=CUBEMAP_3_2},     0,    NB_PROJECTIONS-1, FLAGS, "out" },
 | |
|     {         "e", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "out" },
 | |
|     {  "equirect", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "out" },
 | |
|     {      "c3x2", "cubemap 3x2",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_3_2},     0,                   0, FLAGS, "out" },
 | |
|     {      "c6x1", "cubemap 6x1",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_6_1},     0,                   0, FLAGS, "out" },
 | |
|     {       "eac", "equi-angular cubemap",                       0, AV_OPT_TYPE_CONST,  {.i64=EQUIANGULAR},     0,                   0, FLAGS, "out" },
 | |
|     {  "dfisheye", "dual fisheye",                               0, AV_OPT_TYPE_CONST,  {.i64=DUAL_FISHEYE},    0,                   0, FLAGS, "out" },
 | |
|     {      "flat", "regular video",                              0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "out" },
 | |
|     {"rectilinear", "regular video",                             0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "out" },
 | |
|     {  "gnomonic", "regular video",                              0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "out" },
 | |
|     {    "barrel", "barrel facebook's 360 format",               0, AV_OPT_TYPE_CONST,  {.i64=BARREL},          0,                   0, FLAGS, "out" },
 | |
|     {        "fb", "barrel facebook's 360 format",               0, AV_OPT_TYPE_CONST,  {.i64=BARREL},          0,                   0, FLAGS, "out" },
 | |
|     {      "c1x6", "cubemap 1x6",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_1_6},     0,                   0, FLAGS, "out" },
 | |
|     {        "sg", "stereographic",                              0, AV_OPT_TYPE_CONST,  {.i64=STEREOGRAPHIC},   0,                   0, FLAGS, "out" },
 | |
|     {  "mercator", "mercator",                                   0, AV_OPT_TYPE_CONST,  {.i64=MERCATOR},        0,                   0, FLAGS, "out" },
 | |
|     {      "ball", "ball",                                       0, AV_OPT_TYPE_CONST,  {.i64=BALL},            0,                   0, FLAGS, "out" },
 | |
|     {    "hammer", "hammer",                                     0, AV_OPT_TYPE_CONST,  {.i64=HAMMER},          0,                   0, FLAGS, "out" },
 | |
|     {"sinusoidal", "sinusoidal",                                 0, AV_OPT_TYPE_CONST,  {.i64=SINUSOIDAL},      0,                   0, FLAGS, "out" },
 | |
|     {   "fisheye", "fisheye",                                    0, AV_OPT_TYPE_CONST,  {.i64=FISHEYE},         0,                   0, FLAGS, "out" },
 | |
|     {   "pannini", "pannini",                                    0, AV_OPT_TYPE_CONST,  {.i64=PANNINI},         0,                   0, FLAGS, "out" },
 | |
|     {"cylindrical", "cylindrical",                               0, AV_OPT_TYPE_CONST,  {.i64=CYLINDRICAL},     0,                   0, FLAGS, "out" },
 | |
|     {"perspective", "perspective",                               0, AV_OPT_TYPE_CONST,  {.i64=PERSPECTIVE},     0,                   0, FLAGS, "out" },
 | |
|     {"tetrahedron", "tetrahedron",                               0, AV_OPT_TYPE_CONST,  {.i64=TETRAHEDRON},     0,                   0, FLAGS, "out" },
 | |
|     {"barrelsplit", "barrel split facebook's 360 format",        0, AV_OPT_TYPE_CONST,  {.i64=BARREL_SPLIT},    0,                   0, FLAGS, "out" },
 | |
|     {       "tsp", "truncated square pyramid",                   0, AV_OPT_TYPE_CONST,  {.i64=TSPYRAMID},       0,                   0, FLAGS, "out" },
 | |
|     { "hequirect", "half equirectangular",                       0, AV_OPT_TYPE_CONST,  {.i64=HEQUIRECTANGULAR},0,                   0, FLAGS, "out" },
 | |
|     {        "he", "half equirectangular",                       0, AV_OPT_TYPE_CONST,  {.i64=HEQUIRECTANGULAR},0,                   0, FLAGS, "out" },
 | |
|     { "equisolid", "equisolid",                                  0, AV_OPT_TYPE_CONST,  {.i64=EQUISOLID},       0,                   0, FLAGS, "out" },
 | |
|     {        "og", "orthographic",                               0, AV_OPT_TYPE_CONST,  {.i64=ORTHOGRAPHIC},    0,                   0, FLAGS, "out" },
 | |
|     {    "interp", "set interpolation method",      OFFSET(interp), AV_OPT_TYPE_INT,    {.i64=BILINEAR},        0, NB_INTERP_METHODS-1, FLAGS, "interp" },
 | |
|     {      "near", "nearest neighbour",                          0, AV_OPT_TYPE_CONST,  {.i64=NEAREST},         0,                   0, FLAGS, "interp" },
 | |
|     {   "nearest", "nearest neighbour",                          0, AV_OPT_TYPE_CONST,  {.i64=NEAREST},         0,                   0, FLAGS, "interp" },
 | |
|     {      "line", "bilinear interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=BILINEAR},        0,                   0, FLAGS, "interp" },
 | |
|     {    "linear", "bilinear interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=BILINEAR},        0,                   0, FLAGS, "interp" },
 | |
|     { "lagrange9", "lagrange9 interpolation",                    0, AV_OPT_TYPE_CONST,  {.i64=LAGRANGE9},       0,                   0, FLAGS, "interp" },
 | |
|     {      "cube", "bicubic interpolation",                      0, AV_OPT_TYPE_CONST,  {.i64=BICUBIC},         0,                   0, FLAGS, "interp" },
 | |
|     {     "cubic", "bicubic interpolation",                      0, AV_OPT_TYPE_CONST,  {.i64=BICUBIC},         0,                   0, FLAGS, "interp" },
 | |
|     {      "lanc", "lanczos interpolation",                      0, AV_OPT_TYPE_CONST,  {.i64=LANCZOS},         0,                   0, FLAGS, "interp" },
 | |
|     {   "lanczos", "lanczos interpolation",                      0, AV_OPT_TYPE_CONST,  {.i64=LANCZOS},         0,                   0, FLAGS, "interp" },
 | |
|     {      "sp16", "spline16 interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=SPLINE16},        0,                   0, FLAGS, "interp" },
 | |
|     {  "spline16", "spline16 interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=SPLINE16},        0,                   0, FLAGS, "interp" },
 | |
|     {     "gauss", "gaussian interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=GAUSSIAN},        0,                   0, FLAGS, "interp" },
 | |
|     {  "gaussian", "gaussian interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=GAUSSIAN},        0,                   0, FLAGS, "interp" },
 | |
|     {         "w", "output width",                   OFFSET(width), AV_OPT_TYPE_INT,    {.i64=0},               0,           INT16_MAX, FLAGS, "w"},
 | |
|     {         "h", "output height",                 OFFSET(height), AV_OPT_TYPE_INT,    {.i64=0},               0,           INT16_MAX, FLAGS, "h"},
 | |
|     { "in_stereo", "input stereo format",        OFFSET(in_stereo), AV_OPT_TYPE_INT,    {.i64=STEREO_2D},       0,    NB_STEREO_FMTS-1, FLAGS, "stereo" },
 | |
|     {"out_stereo", "output stereo format",      OFFSET(out_stereo), AV_OPT_TYPE_INT,    {.i64=STEREO_2D},       0,    NB_STEREO_FMTS-1, FLAGS, "stereo" },
 | |
|     {        "2d", "2d mono",                                    0, AV_OPT_TYPE_CONST,  {.i64=STEREO_2D},       0,                   0, FLAGS, "stereo" },
 | |
|     {       "sbs", "side by side",                               0, AV_OPT_TYPE_CONST,  {.i64=STEREO_SBS},      0,                   0, FLAGS, "stereo" },
 | |
|     {        "tb", "top bottom",                                 0, AV_OPT_TYPE_CONST,  {.i64=STEREO_TB},       0,                   0, FLAGS, "stereo" },
 | |
|     { "in_forder", "input cubemap face order",   OFFSET(in_forder), AV_OPT_TYPE_STRING, {.str="rludfb"},        0,     NB_DIRECTIONS-1, FLAGS, "in_forder"},
 | |
|     {"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"},        0,     NB_DIRECTIONS-1, FLAGS, "out_forder"},
 | |
|     {   "in_frot", "input cubemap face rotation",  OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"},        0,     NB_DIRECTIONS-1, FLAGS, "in_frot"},
 | |
|     {  "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"},        0,     NB_DIRECTIONS-1, FLAGS, "out_frot"},
 | |
|     {    "in_pad", "percent input cubemap pads",    OFFSET(in_pad), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,                 0.1,TFLAGS, "in_pad"},
 | |
|     {   "out_pad", "percent output cubemap pads",  OFFSET(out_pad), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,                 0.1,TFLAGS, "out_pad"},
 | |
|     {   "fin_pad", "fixed input cubemap pads",     OFFSET(fin_pad), AV_OPT_TYPE_INT,    {.i64=0},               0,                 100,TFLAGS, "fin_pad"},
 | |
|     {  "fout_pad", "fixed output cubemap pads",   OFFSET(fout_pad), AV_OPT_TYPE_INT,    {.i64=0},               0,                 100,TFLAGS, "fout_pad"},
 | |
|     {       "yaw", "yaw rotation",                     OFFSET(yaw), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f,TFLAGS, "yaw"},
 | |
|     {     "pitch", "pitch rotation",                 OFFSET(pitch), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f,TFLAGS, "pitch"},
 | |
|     {      "roll", "roll rotation",                   OFFSET(roll), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f,TFLAGS, "roll"},
 | |
|     {    "rorder", "rotation order",                OFFSET(rorder), AV_OPT_TYPE_STRING, {.str="ypr"},           0,                   0,TFLAGS, "rorder"},
 | |
|     {     "h_fov", "output horizontal field of view",OFFSET(h_fov), AV_OPT_TYPE_FLOAT,  {.dbl=90.f},     0.00001f,               360.f,TFLAGS, "h_fov"},
 | |
|     {     "v_fov", "output vertical field of view",  OFFSET(v_fov), AV_OPT_TYPE_FLOAT,  {.dbl=45.f},     0.00001f,               360.f,TFLAGS, "v_fov"},
 | |
|     {     "d_fov", "output diagonal field of view",  OFFSET(d_fov), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,               360.f,TFLAGS, "d_fov"},
 | |
|     {    "h_flip", "flip out video horizontally",   OFFSET(h_flip), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1,TFLAGS, "h_flip"},
 | |
|     {    "v_flip", "flip out video vertically",     OFFSET(v_flip), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1,TFLAGS, "v_flip"},
 | |
|     {    "d_flip", "flip out video indepth",        OFFSET(d_flip), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1,TFLAGS, "d_flip"},
 | |
|     {   "ih_flip", "flip in video horizontally",   OFFSET(ih_flip), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1,TFLAGS, "ih_flip"},
 | |
|     {   "iv_flip", "flip in video vertically",     OFFSET(iv_flip), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1,TFLAGS, "iv_flip"},
 | |
|     {  "in_trans", "transpose video input",   OFFSET(in_transpose), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "in_transpose"},
 | |
|     { "out_trans", "transpose video output", OFFSET(out_transpose), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "out_transpose"},
 | |
|     {    "ih_fov", "input horizontal field of view",OFFSET(ih_fov), AV_OPT_TYPE_FLOAT,  {.dbl=90.f},     0.00001f,               360.f,TFLAGS, "ih_fov"},
 | |
|     {    "iv_fov", "input vertical field of view",  OFFSET(iv_fov), AV_OPT_TYPE_FLOAT,  {.dbl=45.f},     0.00001f,               360.f,TFLAGS, "iv_fov"},
 | |
|     {    "id_fov", "input diagonal field of view",  OFFSET(id_fov), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,               360.f,TFLAGS, "id_fov"},
 | |
|     {"alpha_mask", "build mask in alpha plane",      OFFSET(alpha), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "alpha"},
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFILTER_DEFINE_CLASS(v360);
 | |
| 
 | |
| static int query_formats(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
|     static const enum AVPixelFormat pix_fmts[] = {
 | |
|         // YUVA444
 | |
|         AV_PIX_FMT_YUVA444P,   AV_PIX_FMT_YUVA444P9,
 | |
|         AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
 | |
|         AV_PIX_FMT_YUVA444P16,
 | |
| 
 | |
|         // YUVA422
 | |
|         AV_PIX_FMT_YUVA422P,   AV_PIX_FMT_YUVA422P9,
 | |
|         AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
 | |
|         AV_PIX_FMT_YUVA422P16,
 | |
| 
 | |
|         // YUVA420
 | |
|         AV_PIX_FMT_YUVA420P,   AV_PIX_FMT_YUVA420P9,
 | |
|         AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
 | |
| 
 | |
|         // YUVJ
 | |
|         AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
 | |
|         AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
 | |
|         AV_PIX_FMT_YUVJ411P,
 | |
| 
 | |
|         // YUV444
 | |
|         AV_PIX_FMT_YUV444P,   AV_PIX_FMT_YUV444P9,
 | |
|         AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
 | |
|         AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
 | |
| 
 | |
|         // YUV440
 | |
|         AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10,
 | |
|         AV_PIX_FMT_YUV440P12,
 | |
| 
 | |
|         // YUV422
 | |
|         AV_PIX_FMT_YUV422P,   AV_PIX_FMT_YUV422P9,
 | |
|         AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12,
 | |
|         AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
 | |
| 
 | |
|         // YUV420
 | |
|         AV_PIX_FMT_YUV420P,   AV_PIX_FMT_YUV420P9,
 | |
|         AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12,
 | |
|         AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
 | |
| 
 | |
|         // YUV411
 | |
|         AV_PIX_FMT_YUV411P,
 | |
| 
 | |
|         // YUV410
 | |
|         AV_PIX_FMT_YUV410P,
 | |
| 
 | |
|         // GBR
 | |
|         AV_PIX_FMT_GBRP,   AV_PIX_FMT_GBRP9,
 | |
|         AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
 | |
|         AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
 | |
| 
 | |
|         // GBRA
 | |
|         AV_PIX_FMT_GBRAP,   AV_PIX_FMT_GBRAP10,
 | |
|         AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
 | |
| 
 | |
|         // GRAY
 | |
|         AV_PIX_FMT_GRAY8,  AV_PIX_FMT_GRAY9,
 | |
|         AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
 | |
|         AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
 | |
| 
 | |
|         AV_PIX_FMT_NONE
 | |
|     };
 | |
|     static const enum AVPixelFormat alpha_pix_fmts[] = {
 | |
|         AV_PIX_FMT_YUVA444P,   AV_PIX_FMT_YUVA444P9,
 | |
|         AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
 | |
|         AV_PIX_FMT_YUVA444P16,
 | |
|         AV_PIX_FMT_YUVA422P,   AV_PIX_FMT_YUVA422P9,
 | |
|         AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
 | |
|         AV_PIX_FMT_YUVA422P16,
 | |
|         AV_PIX_FMT_YUVA420P,   AV_PIX_FMT_YUVA420P9,
 | |
|         AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
 | |
|         AV_PIX_FMT_GBRAP,   AV_PIX_FMT_GBRAP10,
 | |
|         AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
 | |
|         AV_PIX_FMT_NONE
 | |
|     };
 | |
| 
 | |
|     AVFilterFormats *fmts_list = ff_make_format_list(s->alpha ? alpha_pix_fmts : pix_fmts);
 | |
|     if (!fmts_list)
 | |
|         return AVERROR(ENOMEM);
 | |
|     return ff_set_common_formats(ctx, fmts_list);
 | |
| }
 | |
| 
 | |
| #define DEFINE_REMAP1_LINE(bits, div)                                                    \
 | |
| static void remap1_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
 | |
|                                       ptrdiff_t in_linesize,                             \
 | |
|                                       const int16_t *const u, const int16_t *const v,    \
 | |
|                                       const int16_t *const ker)                          \
 | |
| {                                                                                        \
 | |
|     const uint##bits##_t *const s = (const uint##bits##_t *const)src;                    \
 | |
|     uint##bits##_t *d = (uint##bits##_t *)dst;                                           \
 | |
|                                                                                          \
 | |
|     in_linesize /= div;                                                                  \
 | |
|                                                                                          \
 | |
|     for (int x = 0; x < width; x++)                                                      \
 | |
|         d[x] = s[v[x] * in_linesize + u[x]];                                             \
 | |
| }
 | |
| 
 | |
| DEFINE_REMAP1_LINE( 8, 1)
 | |
| DEFINE_REMAP1_LINE(16, 2)
 | |
| 
 | |
| /**
 | |
|  * Generate remapping function with a given window size and pixel depth.
 | |
|  *
 | |
|  * @param ws size of interpolation window
 | |
|  * @param bits number of bits per pixel
 | |
|  */
 | |
| #define DEFINE_REMAP(ws, bits)                                                                             \
 | |
| static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)          \
 | |
| {                                                                                                          \
 | |
|     ThreadData *td = arg;                                                                                  \
 | |
|     const V360Context *s = ctx->priv;                                                                      \
 | |
|     const AVFrame *in = td->in;                                                                            \
 | |
|     AVFrame *out = td->out;                                                                                \
 | |
|                                                                                                            \
 | |
|     for (int stereo = 0; stereo < 1 + s->out_stereo > STEREO_2D; stereo++) {                               \
 | |
|         for (int plane = 0; plane < s->nb_planes; plane++) {                                               \
 | |
|             const unsigned map = s->map[plane];                                                            \
 | |
|             const int in_linesize  = in->linesize[plane];                                                  \
 | |
|             const int out_linesize = out->linesize[plane];                                                 \
 | |
|             const int uv_linesize = s->uv_linesize[plane];                                                 \
 | |
|             const int in_offset_w = stereo ? s->in_offset_w[plane] : 0;                                    \
 | |
|             const int in_offset_h = stereo ? s->in_offset_h[plane] : 0;                                    \
 | |
|             const int out_offset_w = stereo ? s->out_offset_w[plane] : 0;                                  \
 | |
|             const int out_offset_h = stereo ? s->out_offset_h[plane] : 0;                                  \
 | |
|             const uint8_t *const src = in->data[plane] +                                                   \
 | |
|                                                    in_offset_h * in_linesize + in_offset_w * (bits >> 3);  \
 | |
|             uint8_t *dst = out->data[plane] + out_offset_h * out_linesize + out_offset_w * (bits >> 3);    \
 | |
|             const uint8_t *mask = plane == 3 ? s->mask : NULL;                                             \
 | |
|             const int width = s->pr_width[plane];                                                          \
 | |
|             const int height = s->pr_height[plane];                                                        \
 | |
|                                                                                                            \
 | |
|             const int slice_start = (height *  jobnr     ) / nb_jobs;                                      \
 | |
|             const int slice_end   = (height * (jobnr + 1)) / nb_jobs;                                      \
 | |
|                                                                                                            \
 | |
|             for (int y = slice_start; y < slice_end && !mask; y++) {                                       \
 | |
|                 const int16_t *const u = s->u[map] + y * uv_linesize * ws * ws;                            \
 | |
|                 const int16_t *const v = s->v[map] + y * uv_linesize * ws * ws;                            \
 | |
|                 const int16_t *const ker = s->ker[map] + y * uv_linesize * ws * ws;                        \
 | |
|                                                                                                            \
 | |
|                 s->remap_line(dst + y * out_linesize, width, src, in_linesize, u, v, ker);                 \
 | |
|             }                                                                                              \
 | |
|                                                                                                            \
 | |
|             for (int y = slice_start; y < slice_end && mask; y++) {                                        \
 | |
|                 memcpy(dst + y * out_linesize, mask + y * width * (bits >> 3), width * (bits >> 3));       \
 | |
|             }                                                                                              \
 | |
|         }                                                                                                  \
 | |
|     }                                                                                                      \
 | |
|                                                                                                            \
 | |
|     return 0;                                                                                              \
 | |
| }
 | |
| 
 | |
| DEFINE_REMAP(1,  8)
 | |
| DEFINE_REMAP(2,  8)
 | |
| DEFINE_REMAP(3,  8)
 | |
| DEFINE_REMAP(4,  8)
 | |
| DEFINE_REMAP(1, 16)
 | |
| DEFINE_REMAP(2, 16)
 | |
| DEFINE_REMAP(3, 16)
 | |
| DEFINE_REMAP(4, 16)
 | |
| 
 | |
| #define DEFINE_REMAP_LINE(ws, bits, div)                                                      \
 | |
| static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
 | |
|                                            ptrdiff_t in_linesize,                             \
 | |
|                                            const int16_t *const u, const int16_t *const v,    \
 | |
|                                            const int16_t *const ker)                          \
 | |
| {                                                                                             \
 | |
|     const uint##bits##_t *const s = (const uint##bits##_t *const)src;                         \
 | |
|     uint##bits##_t *d = (uint##bits##_t *)dst;                                                \
 | |
|                                                                                               \
 | |
|     in_linesize /= div;                                                                       \
 | |
|                                                                                               \
 | |
|     for (int x = 0; x < width; x++) {                                                         \
 | |
|         const int16_t *const uu = u + x * ws * ws;                                            \
 | |
|         const int16_t *const vv = v + x * ws * ws;                                            \
 | |
|         const int16_t *const kker = ker + x * ws * ws;                                        \
 | |
|         int tmp = 0;                                                                          \
 | |
|                                                                                               \
 | |
|         for (int i = 0; i < ws; i++) {                                                        \
 | |
|             for (int j = 0; j < ws; j++) {                                                    \
 | |
|                 tmp += kker[i * ws + j] * s[vv[i * ws + j] * in_linesize + uu[i * ws + j]];   \
 | |
|             }                                                                                 \
 | |
|         }                                                                                     \
 | |
|                                                                                               \
 | |
|         d[x] = av_clip_uint##bits(tmp >> 14);                                                 \
 | |
|     }                                                                                         \
 | |
| }
 | |
| 
 | |
| DEFINE_REMAP_LINE(2,  8, 1)
 | |
| DEFINE_REMAP_LINE(3,  8, 1)
 | |
| DEFINE_REMAP_LINE(4,  8, 1)
 | |
| DEFINE_REMAP_LINE(2, 16, 2)
 | |
| DEFINE_REMAP_LINE(3, 16, 2)
 | |
| DEFINE_REMAP_LINE(4, 16, 2)
 | |
| 
 | |
| void ff_v360_init(V360Context *s, int depth)
 | |
| {
 | |
|     switch (s->interp) {
 | |
|     case NEAREST:
 | |
|         s->remap_line = depth <= 8 ? remap1_8bit_line_c : remap1_16bit_line_c;
 | |
|         break;
 | |
|     case BILINEAR:
 | |
|         s->remap_line = depth <= 8 ? remap2_8bit_line_c : remap2_16bit_line_c;
 | |
|         break;
 | |
|     case LAGRANGE9:
 | |
|         s->remap_line = depth <= 8 ? remap3_8bit_line_c : remap3_16bit_line_c;
 | |
|         break;
 | |
|     case BICUBIC:
 | |
|     case LANCZOS:
 | |
|     case SPLINE16:
 | |
|     case GAUSSIAN:
 | |
|         s->remap_line = depth <= 8 ? remap4_8bit_line_c : remap4_16bit_line_c;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (ARCH_X86)
 | |
|         ff_v360_init_x86(s, depth);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Save nearest pixel coordinates for remapping.
 | |
|  *
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  * @param rmap calculated 4x4 window
 | |
|  * @param u u remap data
 | |
|  * @param v v remap data
 | |
|  * @param ker ker remap data
 | |
|  */
 | |
| static void nearest_kernel(float du, float dv, const XYRemap *rmap,
 | |
|                            int16_t *u, int16_t *v, int16_t *ker)
 | |
| {
 | |
|     const int i = lrintf(dv) + 1;
 | |
|     const int j = lrintf(du) + 1;
 | |
| 
 | |
|     u[0] = rmap->u[i][j];
 | |
|     v[0] = rmap->v[i][j];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate kernel for bilinear interpolation.
 | |
|  *
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  * @param rmap calculated 4x4 window
 | |
|  * @param u u remap data
 | |
|  * @param v v remap data
 | |
|  * @param ker ker remap data
 | |
|  */
 | |
| static void bilinear_kernel(float du, float dv, const XYRemap *rmap,
 | |
|                             int16_t *u, int16_t *v, int16_t *ker)
 | |
| {
 | |
|     for (int i = 0; i < 2; i++) {
 | |
|         for (int j = 0; j < 2; j++) {
 | |
|             u[i * 2 + j] = rmap->u[i + 1][j + 1];
 | |
|             v[i * 2 + j] = rmap->v[i + 1][j + 1];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ker[0] = lrintf((1.f - du) * (1.f - dv) * 16385.f);
 | |
|     ker[1] = lrintf(       du  * (1.f - dv) * 16385.f);
 | |
|     ker[2] = lrintf((1.f - du) *        dv  * 16385.f);
 | |
|     ker[3] = lrintf(       du  *        dv  * 16385.f);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 1-dimensional lagrange coefficients.
 | |
|  *
 | |
|  * @param t relative coordinate
 | |
|  * @param coeffs coefficients
 | |
|  */
 | |
| static inline void calculate_lagrange_coeffs(float t, float *coeffs)
 | |
| {
 | |
|     coeffs[0] = (t - 1.f) * (t - 2.f) * 0.5f;
 | |
|     coeffs[1] = -t * (t - 2.f);
 | |
|     coeffs[2] =  t * (t - 1.f) * 0.5f;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate kernel for lagrange interpolation.
 | |
|  *
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  * @param rmap calculated 4x4 window
 | |
|  * @param u u remap data
 | |
|  * @param v v remap data
 | |
|  * @param ker ker remap data
 | |
|  */
 | |
| static void lagrange_kernel(float du, float dv, const XYRemap *rmap,
 | |
|                             int16_t *u, int16_t *v, int16_t *ker)
 | |
| {
 | |
|     float du_coeffs[3];
 | |
|     float dv_coeffs[3];
 | |
| 
 | |
|     calculate_lagrange_coeffs(du, du_coeffs);
 | |
|     calculate_lagrange_coeffs(dv, dv_coeffs);
 | |
| 
 | |
|     for (int i = 0; i < 3; i++) {
 | |
|         for (int j = 0; j < 3; j++) {
 | |
|             u[i * 3 + j] = rmap->u[i + 1][j + 1];
 | |
|             v[i * 3 + j] = rmap->v[i + 1][j + 1];
 | |
|             ker[i * 3 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 1-dimensional cubic coefficients.
 | |
|  *
 | |
|  * @param t relative coordinate
 | |
|  * @param coeffs coefficients
 | |
|  */
 | |
| static inline void calculate_bicubic_coeffs(float t, float *coeffs)
 | |
| {
 | |
|     const float tt  = t * t;
 | |
|     const float ttt = t * t * t;
 | |
| 
 | |
|     coeffs[0] =     - t / 3.f + tt / 2.f - ttt / 6.f;
 | |
|     coeffs[1] = 1.f - t / 2.f - tt       + ttt / 2.f;
 | |
|     coeffs[2] =       t       + tt / 2.f - ttt / 2.f;
 | |
|     coeffs[3] =     - t / 6.f            + ttt / 6.f;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate kernel for bicubic interpolation.
 | |
|  *
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  * @param rmap calculated 4x4 window
 | |
|  * @param u u remap data
 | |
|  * @param v v remap data
 | |
|  * @param ker ker remap data
 | |
|  */
 | |
| static void bicubic_kernel(float du, float dv, const XYRemap *rmap,
 | |
|                            int16_t *u, int16_t *v, int16_t *ker)
 | |
| {
 | |
|     float du_coeffs[4];
 | |
|     float dv_coeffs[4];
 | |
| 
 | |
|     calculate_bicubic_coeffs(du, du_coeffs);
 | |
|     calculate_bicubic_coeffs(dv, dv_coeffs);
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             u[i * 4 + j] = rmap->u[i][j];
 | |
|             v[i * 4 + j] = rmap->v[i][j];
 | |
|             ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 1-dimensional lanczos coefficients.
 | |
|  *
 | |
|  * @param t relative coordinate
 | |
|  * @param coeffs coefficients
 | |
|  */
 | |
| static inline void calculate_lanczos_coeffs(float t, float *coeffs)
 | |
| {
 | |
|     float sum = 0.f;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         const float x = M_PI * (t - i + 1);
 | |
|         if (x == 0.f) {
 | |
|             coeffs[i] = 1.f;
 | |
|         } else {
 | |
|             coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f);
 | |
|         }
 | |
|         sum += coeffs[i];
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         coeffs[i] /= sum;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate kernel for lanczos interpolation.
 | |
|  *
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  * @param rmap calculated 4x4 window
 | |
|  * @param u u remap data
 | |
|  * @param v v remap data
 | |
|  * @param ker ker remap data
 | |
|  */
 | |
| static void lanczos_kernel(float du, float dv, const XYRemap *rmap,
 | |
|                            int16_t *u, int16_t *v, int16_t *ker)
 | |
| {
 | |
|     float du_coeffs[4];
 | |
|     float dv_coeffs[4];
 | |
| 
 | |
|     calculate_lanczos_coeffs(du, du_coeffs);
 | |
|     calculate_lanczos_coeffs(dv, dv_coeffs);
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             u[i * 4 + j] = rmap->u[i][j];
 | |
|             v[i * 4 + j] = rmap->v[i][j];
 | |
|             ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 1-dimensional spline16 coefficients.
 | |
|  *
 | |
|  * @param t relative coordinate
 | |
|  * @param coeffs coefficients
 | |
|  */
 | |
| static void calculate_spline16_coeffs(float t, float *coeffs)
 | |
| {
 | |
|     coeffs[0] = ((-1.f / 3.f * t + 0.8f) * t - 7.f / 15.f) * t;
 | |
|     coeffs[1] = ((t - 9.f / 5.f) * t - 0.2f) * t + 1.f;
 | |
|     coeffs[2] = ((6.f / 5.f - t) * t + 0.8f) * t;
 | |
|     coeffs[3] = ((1.f / 3.f * t - 0.2f) * t - 2.f / 15.f) * t;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate kernel for spline16 interpolation.
 | |
|  *
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  * @param rmap calculated 4x4 window
 | |
|  * @param u u remap data
 | |
|  * @param v v remap data
 | |
|  * @param ker ker remap data
 | |
|  */
 | |
| static void spline16_kernel(float du, float dv, const XYRemap *rmap,
 | |
|                             int16_t *u, int16_t *v, int16_t *ker)
 | |
| {
 | |
|     float du_coeffs[4];
 | |
|     float dv_coeffs[4];
 | |
| 
 | |
|     calculate_spline16_coeffs(du, du_coeffs);
 | |
|     calculate_spline16_coeffs(dv, dv_coeffs);
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             u[i * 4 + j] = rmap->u[i][j];
 | |
|             v[i * 4 + j] = rmap->v[i][j];
 | |
|             ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 1-dimensional gaussian coefficients.
 | |
|  *
 | |
|  * @param t relative coordinate
 | |
|  * @param coeffs coefficients
 | |
|  */
 | |
| static void calculate_gaussian_coeffs(float t, float *coeffs)
 | |
| {
 | |
|     float sum = 0.f;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         const float x = t - (i - 1);
 | |
|         if (x == 0.f) {
 | |
|             coeffs[i] = 1.f;
 | |
|         } else {
 | |
|             coeffs[i] = expf(-2.f * x * x) * expf(-x * x / 2.f);
 | |
|         }
 | |
|         sum += coeffs[i];
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         coeffs[i] /= sum;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate kernel for gaussian interpolation.
 | |
|  *
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  * @param rmap calculated 4x4 window
 | |
|  * @param u u remap data
 | |
|  * @param v v remap data
 | |
|  * @param ker ker remap data
 | |
|  */
 | |
| static void gaussian_kernel(float du, float dv, const XYRemap *rmap,
 | |
|                             int16_t *u, int16_t *v, int16_t *ker)
 | |
| {
 | |
|     float du_coeffs[4];
 | |
|     float dv_coeffs[4];
 | |
| 
 | |
|     calculate_gaussian_coeffs(du, du_coeffs);
 | |
|     calculate_gaussian_coeffs(dv, dv_coeffs);
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             u[i * 4 + j] = rmap->u[i][j];
 | |
|             v[i * 4 + j] = rmap->v[i][j];
 | |
|             ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Modulo operation with only positive remainders.
 | |
|  *
 | |
|  * @param a dividend
 | |
|  * @param b divisor
 | |
|  *
 | |
|  * @return positive remainder of (a / b)
 | |
|  */
 | |
| static inline int mod(int a, int b)
 | |
| {
 | |
|     const int res = a % b;
 | |
|     if (res < 0) {
 | |
|         return res + b;
 | |
|     } else {
 | |
|         return res;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Reflect y operation.
 | |
|  *
 | |
|  * @param y input vertical position
 | |
|  * @param h input height
 | |
|  */
 | |
| static inline int reflecty(int y, int h)
 | |
| {
 | |
|     if (y < 0) {
 | |
|         return -y;
 | |
|     } else if (y >= h) {
 | |
|         return 2 * h - 1 - y;
 | |
|     }
 | |
| 
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Reflect x operation for equirect.
 | |
|  *
 | |
|  * @param x input horizontal position
 | |
|  * @param y input vertical position
 | |
|  * @param w input width
 | |
|  * @param h input height
 | |
|  */
 | |
| static inline int ereflectx(int x, int y, int w, int h)
 | |
| {
 | |
|     if (y < 0 || y >= h)
 | |
|         x += w / 2;
 | |
| 
 | |
|     return mod(x, w);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Reflect x operation.
 | |
|  *
 | |
|  * @param x input horizontal position
 | |
|  * @param y input vertical position
 | |
|  * @param w input width
 | |
|  * @param h input height
 | |
|  */
 | |
| static inline int reflectx(int x, int y, int w, int h)
 | |
| {
 | |
|     if (y < 0 || y >= h)
 | |
|         return w - 1 - x;
 | |
| 
 | |
|     return mod(x, w);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Convert char to corresponding direction.
 | |
|  * Used for cubemap options.
 | |
|  */
 | |
| static int get_direction(char c)
 | |
| {
 | |
|     switch (c) {
 | |
|     case 'r':
 | |
|         return RIGHT;
 | |
|     case 'l':
 | |
|         return LEFT;
 | |
|     case 'u':
 | |
|         return UP;
 | |
|     case 'd':
 | |
|         return DOWN;
 | |
|     case 'f':
 | |
|         return FRONT;
 | |
|     case 'b':
 | |
|         return BACK;
 | |
|     default:
 | |
|         return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Convert char to corresponding rotation angle.
 | |
|  * Used for cubemap options.
 | |
|  */
 | |
| static int get_rotation(char c)
 | |
| {
 | |
|     switch (c) {
 | |
|     case '0':
 | |
|         return ROT_0;
 | |
|     case '1':
 | |
|         return ROT_90;
 | |
|     case '2':
 | |
|         return ROT_180;
 | |
|     case '3':
 | |
|         return ROT_270;
 | |
|     default:
 | |
|         return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Convert char to corresponding rotation order.
 | |
|  */
 | |
| static int get_rorder(char c)
 | |
| {
 | |
|     switch (c) {
 | |
|     case 'Y':
 | |
|     case 'y':
 | |
|         return YAW;
 | |
|     case 'P':
 | |
|     case 'p':
 | |
|         return PITCH;
 | |
|     case 'R':
 | |
|     case 'r':
 | |
|         return ROLL;
 | |
|     default:
 | |
|         return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing cubemap input format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_cube_in(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     for (int face = 0; face < NB_FACES; face++) {
 | |
|         const char c = s->in_forder[face];
 | |
|         int direction;
 | |
| 
 | |
|         if (c == '\0') {
 | |
|             av_log(ctx, AV_LOG_ERROR,
 | |
|                    "Incomplete in_forder option. Direction for all 6 faces should be specified.\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         direction = get_direction(c);
 | |
|         if (direction == -1) {
 | |
|             av_log(ctx, AV_LOG_ERROR,
 | |
|                    "Incorrect direction symbol '%c' in in_forder option.\n", c);
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         s->in_cubemap_face_order[direction] = face;
 | |
|     }
 | |
| 
 | |
|     for (int face = 0; face < NB_FACES; face++) {
 | |
|         const char c = s->in_frot[face];
 | |
|         int rotation;
 | |
| 
 | |
|         if (c == '\0') {
 | |
|             av_log(ctx, AV_LOG_ERROR,
 | |
|                    "Incomplete in_frot option. Rotation for all 6 faces should be specified.\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         rotation = get_rotation(c);
 | |
|         if (rotation == -1) {
 | |
|             av_log(ctx, AV_LOG_ERROR,
 | |
|                    "Incorrect rotation symbol '%c' in in_frot option.\n", c);
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         s->in_cubemap_face_rotation[face] = rotation;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing cubemap output format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_cube_out(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     for (int face = 0; face < NB_FACES; face++) {
 | |
|         const char c = s->out_forder[face];
 | |
|         int direction;
 | |
| 
 | |
|         if (c == '\0') {
 | |
|             av_log(ctx, AV_LOG_ERROR,
 | |
|                    "Incomplete out_forder option. Direction for all 6 faces should be specified.\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         direction = get_direction(c);
 | |
|         if (direction == -1) {
 | |
|             av_log(ctx, AV_LOG_ERROR,
 | |
|                    "Incorrect direction symbol '%c' in out_forder option.\n", c);
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         s->out_cubemap_direction_order[face] = direction;
 | |
|     }
 | |
| 
 | |
|     for (int face = 0; face < NB_FACES; face++) {
 | |
|         const char c = s->out_frot[face];
 | |
|         int rotation;
 | |
| 
 | |
|         if (c == '\0') {
 | |
|             av_log(ctx, AV_LOG_ERROR,
 | |
|                    "Incomplete out_frot option. Rotation for all 6 faces should be specified.\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         rotation = get_rotation(c);
 | |
|         if (rotation == -1) {
 | |
|             av_log(ctx, AV_LOG_ERROR,
 | |
|                    "Incorrect rotation symbol '%c' in out_frot option.\n", c);
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         s->out_cubemap_face_rotation[face] = rotation;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline void rotate_cube_face(float *uf, float *vf, int rotation)
 | |
| {
 | |
|     float tmp;
 | |
| 
 | |
|     switch (rotation) {
 | |
|     case ROT_0:
 | |
|         break;
 | |
|     case ROT_90:
 | |
|         tmp =  *uf;
 | |
|         *uf = -*vf;
 | |
|         *vf =  tmp;
 | |
|         break;
 | |
|     case ROT_180:
 | |
|         *uf = -*uf;
 | |
|         *vf = -*vf;
 | |
|         break;
 | |
|     case ROT_270:
 | |
|         tmp = -*uf;
 | |
|         *uf =  *vf;
 | |
|         *vf =  tmp;
 | |
|         break;
 | |
|     default:
 | |
|         av_assert0(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation)
 | |
| {
 | |
|     float tmp;
 | |
| 
 | |
|     switch (rotation) {
 | |
|     case ROT_0:
 | |
|         break;
 | |
|     case ROT_90:
 | |
|         tmp = -*uf;
 | |
|         *uf =  *vf;
 | |
|         *vf =  tmp;
 | |
|         break;
 | |
|     case ROT_180:
 | |
|         *uf = -*uf;
 | |
|         *vf = -*vf;
 | |
|         break;
 | |
|     case ROT_270:
 | |
|         tmp =  *uf;
 | |
|         *uf = -*vf;
 | |
|         *vf =  tmp;
 | |
|         break;
 | |
|     default:
 | |
|         av_assert0(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Normalize vector.
 | |
|  *
 | |
|  * @param vec vector
 | |
|  */
 | |
| static void normalize_vector(float *vec)
 | |
| {
 | |
|     const float norm = sqrtf(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);
 | |
| 
 | |
|     vec[0] /= norm;
 | |
|     vec[1] /= norm;
 | |
|     vec[2] /= norm;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding cubemap position.
 | |
|  * Common operation for every cubemap.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param uf horizontal cubemap coordinate [0, 1)
 | |
|  * @param vf vertical cubemap coordinate [0, 1)
 | |
|  * @param face face of cubemap
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param scalew scale for uf
 | |
|  * @param scaleh scale for vf
 | |
|  */
 | |
| static void cube_to_xyz(const V360Context *s,
 | |
|                         float uf, float vf, int face,
 | |
|                         float *vec, float scalew, float scaleh)
 | |
| {
 | |
|     const int direction = s->out_cubemap_direction_order[face];
 | |
|     float l_x, l_y, l_z;
 | |
| 
 | |
|     uf /= scalew;
 | |
|     vf /= scaleh;
 | |
| 
 | |
|     rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]);
 | |
| 
 | |
|     switch (direction) {
 | |
|     case RIGHT:
 | |
|         l_x =  1.f;
 | |
|         l_y =  vf;
 | |
|         l_z = -uf;
 | |
|         break;
 | |
|     case LEFT:
 | |
|         l_x = -1.f;
 | |
|         l_y =  vf;
 | |
|         l_z =  uf;
 | |
|         break;
 | |
|     case UP:
 | |
|         l_x =  uf;
 | |
|         l_y = -1.f;
 | |
|         l_z =  vf;
 | |
|         break;
 | |
|     case DOWN:
 | |
|         l_x =  uf;
 | |
|         l_y =  1.f;
 | |
|         l_z = -vf;
 | |
|         break;
 | |
|     case FRONT:
 | |
|         l_x =  uf;
 | |
|         l_y =  vf;
 | |
|         l_z =  1.f;
 | |
|         break;
 | |
|     case BACK:
 | |
|         l_x = -uf;
 | |
|         l_y =  vf;
 | |
|         l_z = -1.f;
 | |
|         break;
 | |
|     default:
 | |
|         av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     vec[0] = l_x;
 | |
|     vec[1] = l_y;
 | |
|     vec[2] = l_z;
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate cubemap position for corresponding 3D coordinates on sphere.
 | |
|  * Common operation for every cubemap.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinated on sphere
 | |
|  * @param uf horizontal cubemap coordinate [0, 1)
 | |
|  * @param vf vertical cubemap coordinate [0, 1)
 | |
|  * @param direction direction of view
 | |
|  */
 | |
| static void xyz_to_cube(const V360Context *s,
 | |
|                         const float *vec,
 | |
|                         float *uf, float *vf, int *direction)
 | |
| {
 | |
|     const float phi   = atan2f(vec[0], vec[2]);
 | |
|     const float theta = asinf(vec[1]);
 | |
|     float phi_norm, theta_threshold;
 | |
|     int face;
 | |
| 
 | |
|     if (phi >= -M_PI_4 && phi < M_PI_4) {
 | |
|         *direction = FRONT;
 | |
|         phi_norm = phi;
 | |
|     } else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) {
 | |
|         *direction = LEFT;
 | |
|         phi_norm = phi + M_PI_2;
 | |
|     } else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) {
 | |
|         *direction = RIGHT;
 | |
|         phi_norm = phi - M_PI_2;
 | |
|     } else {
 | |
|         *direction = BACK;
 | |
|         phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI);
 | |
|     }
 | |
| 
 | |
|     theta_threshold = atanf(cosf(phi_norm));
 | |
|     if (theta > theta_threshold) {
 | |
|         *direction = DOWN;
 | |
|     } else if (theta < -theta_threshold) {
 | |
|         *direction = UP;
 | |
|     }
 | |
| 
 | |
|     switch (*direction) {
 | |
|     case RIGHT:
 | |
|         *uf = -vec[2] / vec[0];
 | |
|         *vf =  vec[1] / vec[0];
 | |
|         break;
 | |
|     case LEFT:
 | |
|         *uf = -vec[2] / vec[0];
 | |
|         *vf = -vec[1] / vec[0];
 | |
|         break;
 | |
|     case UP:
 | |
|         *uf = -vec[0] / vec[1];
 | |
|         *vf = -vec[2] / vec[1];
 | |
|         break;
 | |
|     case DOWN:
 | |
|         *uf =  vec[0] / vec[1];
 | |
|         *vf = -vec[2] / vec[1];
 | |
|         break;
 | |
|     case FRONT:
 | |
|         *uf =  vec[0] / vec[2];
 | |
|         *vf =  vec[1] / vec[2];
 | |
|         break;
 | |
|     case BACK:
 | |
|         *uf =  vec[0] / vec[2];
 | |
|         *vf = -vec[1] / vec[2];
 | |
|         break;
 | |
|     default:
 | |
|         av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     face = s->in_cubemap_face_order[*direction];
 | |
|     rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]);
 | |
| 
 | |
|     (*uf) *= s->input_mirror_modifier[0];
 | |
|     (*vf) *= s->input_mirror_modifier[1];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Find position on another cube face in case of overflow/underflow.
 | |
|  * Used for calculation of interpolation window.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param uf horizontal cubemap coordinate
 | |
|  * @param vf vertical cubemap coordinate
 | |
|  * @param direction direction of view
 | |
|  * @param new_uf new horizontal cubemap coordinate
 | |
|  * @param new_vf new vertical cubemap coordinate
 | |
|  * @param face face position on cubemap
 | |
|  */
 | |
| static void process_cube_coordinates(const V360Context *s,
 | |
|                                      float uf, float vf, int direction,
 | |
|                                      float *new_uf, float *new_vf, int *face)
 | |
| {
 | |
|     /*
 | |
|      *  Cubemap orientation
 | |
|      *
 | |
|      *           width
 | |
|      *         <------->
 | |
|      *         +-------+
 | |
|      *         |       |                              U
 | |
|      *         | up    |                   h       ------->
 | |
|      * +-------+-------+-------+-------+ ^ e      |
 | |
|      * |       |       |       |       | | i    V |
 | |
|      * | left  | front | right | back  | | g      |
 | |
|      * +-------+-------+-------+-------+ v h      v
 | |
|      *         |       |                   t
 | |
|      *         | down  |
 | |
|      *         +-------+
 | |
|      */
 | |
| 
 | |
|     *face = s->in_cubemap_face_order[direction];
 | |
|     rotate_cube_face_inverse(&uf, &vf, s->in_cubemap_face_rotation[*face]);
 | |
| 
 | |
|     if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) {
 | |
|         // There are no pixels to use in this case
 | |
|         *new_uf = uf;
 | |
|         *new_vf = vf;
 | |
|     } else if (uf < -1.f) {
 | |
|         uf += 2.f;
 | |
|         switch (direction) {
 | |
|         case RIGHT:
 | |
|             direction = FRONT;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         case LEFT:
 | |
|             direction = BACK;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         case UP:
 | |
|             direction = LEFT;
 | |
|             *new_uf =  vf;
 | |
|             *new_vf = -uf;
 | |
|             break;
 | |
|         case DOWN:
 | |
|             direction = LEFT;
 | |
|             *new_uf = -vf;
 | |
|             *new_vf =  uf;
 | |
|             break;
 | |
|         case FRONT:
 | |
|             direction = LEFT;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         case BACK:
 | |
|             direction = RIGHT;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         default:
 | |
|             av_assert0(0);
 | |
|         }
 | |
|     } else if (uf >= 1.f) {
 | |
|         uf -= 2.f;
 | |
|         switch (direction) {
 | |
|         case RIGHT:
 | |
|             direction = BACK;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         case LEFT:
 | |
|             direction = FRONT;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         case UP:
 | |
|             direction = RIGHT;
 | |
|             *new_uf = -vf;
 | |
|             *new_vf =  uf;
 | |
|             break;
 | |
|         case DOWN:
 | |
|             direction = RIGHT;
 | |
|             *new_uf =  vf;
 | |
|             *new_vf = -uf;
 | |
|             break;
 | |
|         case FRONT:
 | |
|             direction = RIGHT;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         case BACK:
 | |
|             direction = LEFT;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         default:
 | |
|             av_assert0(0);
 | |
|         }
 | |
|     } else if (vf < -1.f) {
 | |
|         vf += 2.f;
 | |
|         switch (direction) {
 | |
|         case RIGHT:
 | |
|             direction = UP;
 | |
|             *new_uf =  vf;
 | |
|             *new_vf = -uf;
 | |
|             break;
 | |
|         case LEFT:
 | |
|             direction = UP;
 | |
|             *new_uf = -vf;
 | |
|             *new_vf =  uf;
 | |
|             break;
 | |
|         case UP:
 | |
|             direction = BACK;
 | |
|             *new_uf = -uf;
 | |
|             *new_vf = -vf;
 | |
|             break;
 | |
|         case DOWN:
 | |
|             direction = FRONT;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         case FRONT:
 | |
|             direction = UP;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         case BACK:
 | |
|             direction = UP;
 | |
|             *new_uf = -uf;
 | |
|             *new_vf = -vf;
 | |
|             break;
 | |
|         default:
 | |
|             av_assert0(0);
 | |
|         }
 | |
|     } else if (vf >= 1.f) {
 | |
|         vf -= 2.f;
 | |
|         switch (direction) {
 | |
|         case RIGHT:
 | |
|             direction = DOWN;
 | |
|             *new_uf = -vf;
 | |
|             *new_vf =  uf;
 | |
|             break;
 | |
|         case LEFT:
 | |
|             direction = DOWN;
 | |
|             *new_uf =  vf;
 | |
|             *new_vf = -uf;
 | |
|             break;
 | |
|         case UP:
 | |
|             direction = FRONT;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         case DOWN:
 | |
|             direction = BACK;
 | |
|             *new_uf = -uf;
 | |
|             *new_vf = -vf;
 | |
|             break;
 | |
|         case FRONT:
 | |
|             direction = DOWN;
 | |
|             *new_uf =  uf;
 | |
|             *new_vf =  vf;
 | |
|             break;
 | |
|         case BACK:
 | |
|             direction = DOWN;
 | |
|             *new_uf = -uf;
 | |
|             *new_vf = -vf;
 | |
|             break;
 | |
|         default:
 | |
|             av_assert0(0);
 | |
|         }
 | |
|     } else {
 | |
|         // Inside cube face
 | |
|         *new_uf = uf;
 | |
|         *new_vf = vf;
 | |
|     }
 | |
| 
 | |
|     *face = s->in_cubemap_face_order[direction];
 | |
|     rotate_cube_face(new_uf, new_vf, s->in_cubemap_face_rotation[*face]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in cubemap3x2 format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int cube3x2_to_xyz(const V360Context *s,
 | |
|                           int i, int j, int width, int height,
 | |
|                           float *vec)
 | |
| {
 | |
|     const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width  / 3.f) : 1.f - s->out_pad;
 | |
|     const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 2.f) : 1.f - s->out_pad;
 | |
| 
 | |
|     const float ew = width  / 3.f;
 | |
|     const float eh = height / 2.f;
 | |
| 
 | |
|     const int u_face = floorf(i / ew);
 | |
|     const int v_face = floorf(j / eh);
 | |
|     const int face = u_face + 3 * v_face;
 | |
| 
 | |
|     const int u_shift = ceilf(ew * u_face);
 | |
|     const int v_shift = ceilf(eh * v_face);
 | |
|     const int ewi = ceilf(ew * (u_face + 1)) - u_shift;
 | |
|     const int ehi = ceilf(eh * (v_face + 1)) - v_shift;
 | |
| 
 | |
|     const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
 | |
|     const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
 | |
| 
 | |
|     cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in cubemap3x2 format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_cube3x2(const V360Context *s,
 | |
|                           const float *vec, int width, int height,
 | |
|                           int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width  / 3.f) : 1.f - s->in_pad;
 | |
|     const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 2.f) : 1.f - s->in_pad;
 | |
|     const float ew = width  / 3.f;
 | |
|     const float eh = height / 2.f;
 | |
|     float uf, vf;
 | |
|     int ui, vi;
 | |
|     int ewi, ehi;
 | |
|     int direction, face;
 | |
|     int u_face, v_face;
 | |
| 
 | |
|     xyz_to_cube(s, vec, &uf, &vf, &direction);
 | |
| 
 | |
|     uf *= scalew;
 | |
|     vf *= scaleh;
 | |
| 
 | |
|     face = s->in_cubemap_face_order[direction];
 | |
|     u_face = face % 3;
 | |
|     v_face = face / 3;
 | |
|     ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face);
 | |
|     ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face);
 | |
| 
 | |
|     uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
 | |
|     vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
 | |
| 
 | |
|     ui = floorf(uf);
 | |
|     vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             int new_ui = ui + j - 1;
 | |
|             int new_vi = vi + i - 1;
 | |
|             int u_shift, v_shift;
 | |
|             int new_ewi, new_ehi;
 | |
| 
 | |
|             if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
 | |
|                 face = s->in_cubemap_face_order[direction];
 | |
| 
 | |
|                 u_face = face % 3;
 | |
|                 v_face = face / 3;
 | |
|                 u_shift = ceilf(ew * u_face);
 | |
|                 v_shift = ceilf(eh * v_face);
 | |
|             } else {
 | |
|                 uf = 2.f * new_ui / ewi - 1.f;
 | |
|                 vf = 2.f * new_vi / ehi - 1.f;
 | |
| 
 | |
|                 uf /= scalew;
 | |
|                 vf /= scaleh;
 | |
| 
 | |
|                 process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
 | |
| 
 | |
|                 uf *= scalew;
 | |
|                 vf *= scaleh;
 | |
| 
 | |
|                 u_face = face % 3;
 | |
|                 v_face = face / 3;
 | |
|                 u_shift = ceilf(ew * u_face);
 | |
|                 v_shift = ceilf(eh * v_face);
 | |
|                 new_ewi = ceilf(ew * (u_face + 1)) - u_shift;
 | |
|                 new_ehi = ceilf(eh * (v_face + 1)) - v_shift;
 | |
| 
 | |
|                 new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
 | |
|                 new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
 | |
|             }
 | |
| 
 | |
|             us[i][j] = u_shift + new_ui;
 | |
|             vs[i][j] = v_shift + new_vi;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in cubemap1x6 format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int cube1x6_to_xyz(const V360Context *s,
 | |
|                           int i, int j, int width, int height,
 | |
|                           float *vec)
 | |
| {
 | |
|     const float scalew = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / width : 1.f - s->out_pad;
 | |
|     const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 6.f) : 1.f - s->out_pad;
 | |
| 
 | |
|     const float ew = width;
 | |
|     const float eh = height / 6.f;
 | |
| 
 | |
|     const int face = floorf(j / eh);
 | |
| 
 | |
|     const int v_shift = ceilf(eh * face);
 | |
|     const int ehi = ceilf(eh * (face + 1)) - v_shift;
 | |
| 
 | |
|     const float uf = 2.f * (i           + 0.5f) / ew  - 1.f;
 | |
|     const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
 | |
| 
 | |
|     cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in cubemap6x1 format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int cube6x1_to_xyz(const V360Context *s,
 | |
|                           int i, int j, int width, int height,
 | |
|                           float *vec)
 | |
| {
 | |
|     const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 6.f)   : 1.f - s->out_pad;
 | |
|     const float scaleh = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / height : 1.f - s->out_pad;
 | |
| 
 | |
|     const float ew = width / 6.f;
 | |
|     const float eh = height;
 | |
| 
 | |
|     const int face = floorf(i / ew);
 | |
| 
 | |
|     const int u_shift = ceilf(ew * face);
 | |
|     const int ewi = ceilf(ew * (face + 1)) - u_shift;
 | |
| 
 | |
|     const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
 | |
|     const float vf = 2.f * (j           + 0.5f) / eh  - 1.f;
 | |
| 
 | |
|     cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in cubemap1x6 format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_cube1x6(const V360Context *s,
 | |
|                           const float *vec, int width, int height,
 | |
|                           int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float scalew = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / width : 1.f - s->in_pad;
 | |
|     const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 6.f) : 1.f - s->in_pad;
 | |
|     const float eh = height / 6.f;
 | |
|     const int ewi = width;
 | |
|     float uf, vf;
 | |
|     int ui, vi;
 | |
|     int ehi;
 | |
|     int direction, face;
 | |
| 
 | |
|     xyz_to_cube(s, vec, &uf, &vf, &direction);
 | |
| 
 | |
|     uf *= scalew;
 | |
|     vf *= scaleh;
 | |
| 
 | |
|     face = s->in_cubemap_face_order[direction];
 | |
|     ehi = ceilf(eh * (face + 1)) - ceilf(eh * face);
 | |
| 
 | |
|     uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
 | |
|     vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
 | |
| 
 | |
|     ui = floorf(uf);
 | |
|     vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             int new_ui = ui + j - 1;
 | |
|             int new_vi = vi + i - 1;
 | |
|             int v_shift;
 | |
|             int new_ehi;
 | |
| 
 | |
|             if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
 | |
|                 face = s->in_cubemap_face_order[direction];
 | |
| 
 | |
|                 v_shift = ceilf(eh * face);
 | |
|             } else {
 | |
|                 uf = 2.f * new_ui / ewi - 1.f;
 | |
|                 vf = 2.f * new_vi / ehi - 1.f;
 | |
| 
 | |
|                 uf /= scalew;
 | |
|                 vf /= scaleh;
 | |
| 
 | |
|                 process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
 | |
| 
 | |
|                 uf *= scalew;
 | |
|                 vf *= scaleh;
 | |
| 
 | |
|                 v_shift = ceilf(eh * face);
 | |
|                 new_ehi = ceilf(eh * (face + 1)) - v_shift;
 | |
| 
 | |
|                 new_ui = av_clip(lrintf(0.5f *     ewi * (uf + 1.f)), 0,     ewi - 1);
 | |
|                 new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
 | |
|             }
 | |
| 
 | |
|             us[i][j] =           new_ui;
 | |
|             vs[i][j] = v_shift + new_vi;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in cubemap6x1 format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_cube6x1(const V360Context *s,
 | |
|                           const float *vec, int width, int height,
 | |
|                           int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 6.f)   : 1.f - s->in_pad;
 | |
|     const float scaleh = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / height : 1.f - s->in_pad;
 | |
|     const float ew = width / 6.f;
 | |
|     const int ehi = height;
 | |
|     float uf, vf;
 | |
|     int ui, vi;
 | |
|     int ewi;
 | |
|     int direction, face;
 | |
| 
 | |
|     xyz_to_cube(s, vec, &uf, &vf, &direction);
 | |
| 
 | |
|     uf *= scalew;
 | |
|     vf *= scaleh;
 | |
| 
 | |
|     face = s->in_cubemap_face_order[direction];
 | |
|     ewi = ceilf(ew * (face + 1)) - ceilf(ew * face);
 | |
| 
 | |
|     uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
 | |
|     vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
 | |
| 
 | |
|     ui = floorf(uf);
 | |
|     vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             int new_ui = ui + j - 1;
 | |
|             int new_vi = vi + i - 1;
 | |
|             int u_shift;
 | |
|             int new_ewi;
 | |
| 
 | |
|             if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
 | |
|                 face = s->in_cubemap_face_order[direction];
 | |
| 
 | |
|                 u_shift = ceilf(ew * face);
 | |
|             } else {
 | |
|                 uf = 2.f * new_ui / ewi - 1.f;
 | |
|                 vf = 2.f * new_vi / ehi - 1.f;
 | |
| 
 | |
|                 uf /= scalew;
 | |
|                 vf /= scaleh;
 | |
| 
 | |
|                 process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
 | |
| 
 | |
|                 uf *= scalew;
 | |
|                 vf *= scaleh;
 | |
| 
 | |
|                 u_shift = ceilf(ew * face);
 | |
|                 new_ewi = ceilf(ew * (face + 1)) - u_shift;
 | |
| 
 | |
|                 new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
 | |
|                 new_vi = av_clip(lrintf(0.5f *     ehi * (vf + 1.f)), 0,     ehi - 1);
 | |
|             }
 | |
| 
 | |
|             us[i][j] = u_shift + new_ui;
 | |
|             vs[i][j] =           new_vi;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in equirectangular format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int equirect_to_xyz(const V360Context *s,
 | |
|                            int i, int j, int width, int height,
 | |
|                            float *vec)
 | |
| {
 | |
|     const float phi   = ((2.f * i + 0.5f) / width  - 1.f) * M_PI;
 | |
|     const float theta = ((2.f * j + 0.5f) / height - 1.f) * M_PI_2;
 | |
| 
 | |
|     const float sin_phi   = sinf(phi);
 | |
|     const float cos_phi   = cosf(phi);
 | |
|     const float sin_theta = sinf(theta);
 | |
|     const float cos_theta = cosf(theta);
 | |
| 
 | |
|     vec[0] = cos_theta * sin_phi;
 | |
|     vec[1] = sin_theta;
 | |
|     vec[2] = cos_theta * cos_phi;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in half equirectangular format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int hequirect_to_xyz(const V360Context *s,
 | |
|                             int i, int j, int width, int height,
 | |
|                             float *vec)
 | |
| {
 | |
|     const float phi   = ((2.f * i + 0.5f) / width  - 1.f) * M_PI_2;
 | |
|     const float theta = ((2.f * j + 0.5f) / height - 1.f) * M_PI_2;
 | |
| 
 | |
|     const float sin_phi   = sinf(phi);
 | |
|     const float cos_phi   = cosf(phi);
 | |
|     const float sin_theta = sinf(theta);
 | |
|     const float cos_theta = cosf(theta);
 | |
| 
 | |
|     vec[0] = cos_theta * sin_phi;
 | |
|     vec[1] = sin_theta;
 | |
|     vec[2] = cos_theta * cos_phi;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing stereographic output format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_stereographic_out(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->flat_range[0] = tanf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f);
 | |
|     s->flat_range[1] = tanf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in stereographic format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int stereographic_to_xyz(const V360Context *s,
 | |
|                                 int i, int j, int width, int height,
 | |
|                                 float *vec)
 | |
| {
 | |
|     const float x = ((2.f * i + 1.f) / width  - 1.f) * s->flat_range[0];
 | |
|     const float y = ((2.f * j + 1.f) / height - 1.f) * s->flat_range[1];
 | |
|     const float r = hypotf(x, y);
 | |
|     const float theta = atanf(r) * 2.f;
 | |
|     const float sin_theta = sinf(theta);
 | |
| 
 | |
|     vec[0] = x / r * sin_theta;
 | |
|     vec[1] = y / r * sin_theta;
 | |
|     vec[2] = cosf(theta);
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing stereographic input format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_stereographic_in(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->iflat_range[0] = tanf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f);
 | |
|     s->iflat_range[1] = tanf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in stereographic format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_stereographic(const V360Context *s,
 | |
|                                 const float *vec, int width, int height,
 | |
|                                 int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float theta = acosf(vec[2]);
 | |
|     const float r = tanf(theta * 0.5f);
 | |
|     const float c = r / hypotf(vec[0], vec[1]);
 | |
|     const float x = vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0];
 | |
|     const float y = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1];
 | |
| 
 | |
|     const float uf = (x + 1.f) * width  / 2.f;
 | |
|     const float vf = (y + 1.f) * height / 2.f;
 | |
| 
 | |
|     const int ui = floorf(uf);
 | |
|     const int vi = floorf(vf);
 | |
| 
 | |
|     const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
 | |
| 
 | |
|     *du = visible ? uf - ui : 0.f;
 | |
|     *dv = visible ? vf - vi : 0.f;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = visible ? av_clip(ui + j - 1, 0, width  - 1) : 0;
 | |
|             vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return visible;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing equisolid output format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_equisolid_out(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->flat_range[0] = sinf(s->h_fov * M_PI / 720.f);
 | |
|     s->flat_range[1] = sinf(s->v_fov * M_PI / 720.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in equisolid format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int equisolid_to_xyz(const V360Context *s,
 | |
|                             int i, int j, int width, int height,
 | |
|                             float *vec)
 | |
| {
 | |
|     const float x = ((2.f * i + 1.f) / width  - 1.f) * s->flat_range[0];
 | |
|     const float y = ((2.f * j + 1.f) / height - 1.f) * s->flat_range[1];
 | |
|     const float r = hypotf(x, y);
 | |
|     const float theta = asinf(r) * 2.f;
 | |
|     const float sin_theta = sinf(theta);
 | |
| 
 | |
|     vec[0] = x / r * sin_theta;
 | |
|     vec[1] = y / r * sin_theta;
 | |
|     vec[2] = cosf(theta);
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing equisolid input format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_equisolid_in(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f);
 | |
|     s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in equisolid format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_equisolid(const V360Context *s,
 | |
|                             const float *vec, int width, int height,
 | |
|                             int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float theta = acosf(vec[2]);
 | |
|     const float r = sinf(theta * 0.5f);
 | |
|     const float c = r / hypotf(vec[0], vec[1]);
 | |
|     const float x = vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0];
 | |
|     const float y = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1];
 | |
| 
 | |
|     const float uf = (x + 1.f) * width  / 2.f;
 | |
|     const float vf = (y + 1.f) * height / 2.f;
 | |
| 
 | |
|     const int ui = floorf(uf);
 | |
|     const int vi = floorf(vf);
 | |
| 
 | |
|     const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
 | |
| 
 | |
|     *du = visible ? uf - ui : 0.f;
 | |
|     *dv = visible ? vf - vi : 0.f;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = visible ? av_clip(ui + j - 1, 0, width  - 1) : 0;
 | |
|             vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return visible;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing orthographic output format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_orthographic_out(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->flat_range[0] = sinf(FFMIN(s->h_fov, 180.f) * M_PI / 360.f);
 | |
|     s->flat_range[1] = sinf(FFMIN(s->v_fov, 180.f) * M_PI / 360.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in orthographic format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int orthographic_to_xyz(const V360Context *s,
 | |
|                                int i, int j, int width, int height,
 | |
|                                float *vec)
 | |
| {
 | |
|     const float x = ((2.f * i + 1.f) / width  - 1.f) * s->flat_range[0];
 | |
|     const float y = ((2.f * j + 1.f) / height - 1.f) * s->flat_range[1];
 | |
|     const float r = hypotf(x, y);
 | |
|     const float theta = asinf(r);
 | |
| 
 | |
|     vec[0] = x;
 | |
|     vec[1] = y;
 | |
|     vec[2] = cosf(theta);
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing orthographic input format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_orthographic_in(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 180.f) * M_PI / 360.f);
 | |
|     s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 180.f) * M_PI / 360.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in orthographic format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_orthographic(const V360Context *s,
 | |
|                                const float *vec, int width, int height,
 | |
|                                int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float theta = acosf(vec[2]);
 | |
|     const float r = sinf(theta);
 | |
|     const float c = r / hypotf(vec[0], vec[1]);
 | |
|     const float x = vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0];
 | |
|     const float y = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1];
 | |
| 
 | |
|     const float uf = (x + 1.f) * width  / 2.f;
 | |
|     const float vf = (y + 1.f) * height / 2.f;
 | |
| 
 | |
|     const int ui = floorf(uf);
 | |
|     const int vi = floorf(vf);
 | |
| 
 | |
|     const int visible = vec[2] >= 0.f && isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
 | |
| 
 | |
|     *du = visible ? uf - ui : 0.f;
 | |
|     *dv = visible ? vf - vi : 0.f;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = visible ? av_clip(ui + j - 1, 0, width  - 1) : 0;
 | |
|             vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return visible;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_equirect(const V360Context *s,
 | |
|                            const float *vec, int width, int height,
 | |
|                            int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float phi   = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
 | |
|     const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
 | |
| 
 | |
|     const float uf = (phi   / M_PI   + 1.f) * width  / 2.f;
 | |
|     const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
 | |
| 
 | |
|     const int ui = floorf(uf);
 | |
|     const int vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = ereflectx(ui + j - 1, vi + i - 1, width, height);
 | |
|             vs[i][j] = reflecty(vi + i - 1, height);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in half equirectangular format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_hequirect(const V360Context *s,
 | |
|                             const float *vec, int width, int height,
 | |
|                             int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float phi   = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
 | |
|     const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
 | |
| 
 | |
|     const float uf = (phi   / M_PI_2 + 1.f) * width  / 2.f;
 | |
|     const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
 | |
| 
 | |
|     const int ui = floorf(uf);
 | |
|     const int vi = floorf(vf);
 | |
| 
 | |
|     const int visible = phi >= -M_PI_2 && phi <= M_PI_2;
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = av_clip(ui + j - 1, 0, width  - 1);
 | |
|             vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return visible;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing flat input format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_flat_in(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->iflat_range[0] = tanf(0.5f * s->ih_fov * M_PI / 180.f);
 | |
|     s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in flat format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_flat(const V360Context *s,
 | |
|                        const float *vec, int width, int height,
 | |
|                        int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float theta = acosf(vec[2]);
 | |
|     const float r = tanf(theta);
 | |
|     const float rr = fabsf(r) < 1e+6f ? r : hypotf(width, height);
 | |
|     const float zf = vec[2];
 | |
|     const float h = hypotf(vec[0], vec[1]);
 | |
|     const float c = h <= 1e-6f ? 1.f : rr / h;
 | |
|     float uf = vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0];
 | |
|     float vf = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1];
 | |
|     int visible, ui, vi;
 | |
| 
 | |
|     uf = zf >= 0.f ? (uf + 1.f) * width  / 2.f : 0.f;
 | |
|     vf = zf >= 0.f ? (vf + 1.f) * height / 2.f : 0.f;
 | |
| 
 | |
|     ui = floorf(uf);
 | |
|     vi = floorf(vf);
 | |
| 
 | |
|     visible = vi >= 0 && vi < height && ui >= 0 && ui < width && zf >= 0.f;
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = visible ? av_clip(ui + j - 1, 0, width  - 1) : 0;
 | |
|             vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return visible;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in mercator format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_mercator(const V360Context *s,
 | |
|                            const float *vec, int width, int height,
 | |
|                            int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float phi   = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
 | |
|     const float theta = vec[1] * s->input_mirror_modifier[1];
 | |
| 
 | |
|     const float uf = (phi / M_PI + 1.f) * width / 2.f;
 | |
|     const float vf = (av_clipf(logf((1.f + theta) / (1.f - theta)) / (2.f * M_PI), -1.f, 1.f) + 1.f) * height / 2.f;
 | |
| 
 | |
|     const int ui = floorf(uf);
 | |
|     const int vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = av_clip(ui + j - 1, 0, width  - 1);
 | |
|             vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in mercator format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int mercator_to_xyz(const V360Context *s,
 | |
|                            int i, int j, int width, int height,
 | |
|                            float *vec)
 | |
| {
 | |
|     const float phi = ((2.f * i + 1.f) / width  - 1.f) * M_PI + M_PI_2;
 | |
|     const float y   = ((2.f * j + 1.f) / height - 1.f) * M_PI;
 | |
|     const float div = expf(2.f * y) + 1.f;
 | |
| 
 | |
|     const float sin_phi   = sinf(phi);
 | |
|     const float cos_phi   = cosf(phi);
 | |
|     const float sin_theta = 2.f * expf(y) / div;
 | |
|     const float cos_theta = (expf(2.f * y) - 1.f) / div;
 | |
| 
 | |
|     vec[0] = -sin_theta * cos_phi;
 | |
|     vec[1] =  cos_theta;
 | |
|     vec[2] =  sin_theta * sin_phi;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in ball format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_ball(const V360Context *s,
 | |
|                        const float *vec, int width, int height,
 | |
|                        int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float l = hypotf(vec[0], vec[1]);
 | |
|     const float r = sqrtf(1.f - vec[2]) / M_SQRT2;
 | |
| 
 | |
|     const float uf = (1.f + r * vec[0] * s->input_mirror_modifier[0] / (l > 0.f ? l : 1.f)) * width  * 0.5f;
 | |
|     const float vf = (1.f + r * vec[1] * s->input_mirror_modifier[1] / (l > 0.f ? l : 1.f)) * height * 0.5f;
 | |
| 
 | |
|     const int ui = floorf(uf);
 | |
|     const int vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = av_clip(ui + j - 1, 0, width  - 1);
 | |
|             vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in ball format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int ball_to_xyz(const V360Context *s,
 | |
|                        int i, int j, int width, int height,
 | |
|                        float *vec)
 | |
| {
 | |
|     const float x = (2.f * i + 1.f) / width  - 1.f;
 | |
|     const float y = (2.f * j + 1.f) / height - 1.f;
 | |
|     const float l = hypotf(x, y);
 | |
| 
 | |
|     if (l <= 1.f) {
 | |
|         const float z = 2.f * l * sqrtf(1.f - l * l);
 | |
| 
 | |
|         vec[0] = z * x / (l > 0.f ? l : 1.f);
 | |
|         vec[1] = z * y / (l > 0.f ? l : 1.f);
 | |
|         vec[2] = 1.f - 2.f * l * l;
 | |
|     } else {
 | |
|         vec[0] = 0.f;
 | |
|         vec[1] = 1.f;
 | |
|         vec[2] = 0.f;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in hammer format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int hammer_to_xyz(const V360Context *s,
 | |
|                          int i, int j, int width, int height,
 | |
|                          float *vec)
 | |
| {
 | |
|     const float x = ((2.f * i + 1.f) / width  - 1.f);
 | |
|     const float y = ((2.f * j + 1.f) / height - 1.f);
 | |
| 
 | |
|     const float xx = x * x;
 | |
|     const float yy = y * y;
 | |
| 
 | |
|     const float z = sqrtf(1.f - xx * 0.5f - yy * 0.5f);
 | |
| 
 | |
|     const float a = M_SQRT2 * x * z;
 | |
|     const float b = 2.f * z * z - 1.f;
 | |
| 
 | |
|     const float aa = a * a;
 | |
|     const float bb = b * b;
 | |
| 
 | |
|     const float w = sqrtf(1.f - 2.f * yy * z * z);
 | |
| 
 | |
|     vec[0] = w * 2.f * a * b / (aa + bb);
 | |
|     vec[1] = M_SQRT2 * y * z;
 | |
|     vec[2] = w * (bb  - aa) / (aa + bb);
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in hammer format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_hammer(const V360Context *s,
 | |
|                          const float *vec, int width, int height,
 | |
|                          int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float theta = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
 | |
| 
 | |
|     const float z = sqrtf(1.f + sqrtf(1.f - vec[1] * vec[1]) * cosf(theta * 0.5f));
 | |
|     const float x = sqrtf(1.f - vec[1] * vec[1]) * sinf(theta * 0.5f) / z;
 | |
|     const float y = vec[1] / z * s->input_mirror_modifier[1];
 | |
| 
 | |
|     const float uf = (x + 1.f) * width  / 2.f;
 | |
|     const float vf = (y + 1.f) * height / 2.f;
 | |
| 
 | |
|     const int ui = floorf(uf);
 | |
|     const int vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = av_clip(ui + j - 1, 0, width  - 1);
 | |
|             vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in sinusoidal format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int sinusoidal_to_xyz(const V360Context *s,
 | |
|                              int i, int j, int width, int height,
 | |
|                              float *vec)
 | |
| {
 | |
|     const float theta = ((2.f * j + 1.f) / height - 1.f) * M_PI_2;
 | |
|     const float phi   = ((2.f * i + 1.f) / width  - 1.f) * M_PI / cosf(theta);
 | |
| 
 | |
|     const float sin_phi   = sinf(phi);
 | |
|     const float cos_phi   = cosf(phi);
 | |
|     const float sin_theta = sinf(theta);
 | |
|     const float cos_theta = cosf(theta);
 | |
| 
 | |
|     vec[0] = cos_theta * sin_phi;
 | |
|     vec[1] = sin_theta;
 | |
|     vec[2] = cos_theta * cos_phi;
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in sinusoidal format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_sinusoidal(const V360Context *s,
 | |
|                              const float *vec, int width, int height,
 | |
|                              int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
 | |
|     const float phi   = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0] * cosf(theta);
 | |
| 
 | |
|     const float uf = (phi   / M_PI   + 1.f) * width  / 2.f;
 | |
|     const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
 | |
| 
 | |
|     const int ui = floorf(uf);
 | |
|     const int vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = av_clip(ui + j - 1, 0, width  - 1);
 | |
|             vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing equi-angular cubemap input format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_eac_in(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     if (s->ih_flip && s->iv_flip) {
 | |
|         s->in_cubemap_face_order[RIGHT] = BOTTOM_LEFT;
 | |
|         s->in_cubemap_face_order[LEFT]  = BOTTOM_RIGHT;
 | |
|         s->in_cubemap_face_order[UP]    = TOP_LEFT;
 | |
|         s->in_cubemap_face_order[DOWN]  = TOP_RIGHT;
 | |
|         s->in_cubemap_face_order[FRONT] = BOTTOM_MIDDLE;
 | |
|         s->in_cubemap_face_order[BACK]  = TOP_MIDDLE;
 | |
|     } else if (s->ih_flip) {
 | |
|         s->in_cubemap_face_order[RIGHT] = TOP_LEFT;
 | |
|         s->in_cubemap_face_order[LEFT]  = TOP_RIGHT;
 | |
|         s->in_cubemap_face_order[UP]    = BOTTOM_LEFT;
 | |
|         s->in_cubemap_face_order[DOWN]  = BOTTOM_RIGHT;
 | |
|         s->in_cubemap_face_order[FRONT] = TOP_MIDDLE;
 | |
|         s->in_cubemap_face_order[BACK]  = BOTTOM_MIDDLE;
 | |
|     } else if (s->iv_flip) {
 | |
|         s->in_cubemap_face_order[RIGHT] = BOTTOM_RIGHT;
 | |
|         s->in_cubemap_face_order[LEFT]  = BOTTOM_LEFT;
 | |
|         s->in_cubemap_face_order[UP]    = TOP_RIGHT;
 | |
|         s->in_cubemap_face_order[DOWN]  = TOP_LEFT;
 | |
|         s->in_cubemap_face_order[FRONT] = BOTTOM_MIDDLE;
 | |
|         s->in_cubemap_face_order[BACK]  = TOP_MIDDLE;
 | |
|     } else {
 | |
|         s->in_cubemap_face_order[RIGHT] = TOP_RIGHT;
 | |
|         s->in_cubemap_face_order[LEFT]  = TOP_LEFT;
 | |
|         s->in_cubemap_face_order[UP]    = BOTTOM_RIGHT;
 | |
|         s->in_cubemap_face_order[DOWN]  = BOTTOM_LEFT;
 | |
|         s->in_cubemap_face_order[FRONT] = TOP_MIDDLE;
 | |
|         s->in_cubemap_face_order[BACK]  = BOTTOM_MIDDLE;
 | |
|     }
 | |
| 
 | |
|     if (s->iv_flip) {
 | |
|         s->in_cubemap_face_rotation[TOP_LEFT]      = ROT_270;
 | |
|         s->in_cubemap_face_rotation[TOP_MIDDLE]    = ROT_90;
 | |
|         s->in_cubemap_face_rotation[TOP_RIGHT]     = ROT_270;
 | |
|         s->in_cubemap_face_rotation[BOTTOM_LEFT]   = ROT_0;
 | |
|         s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_0;
 | |
|         s->in_cubemap_face_rotation[BOTTOM_RIGHT]  = ROT_0;
 | |
|     } else {
 | |
|         s->in_cubemap_face_rotation[TOP_LEFT]      = ROT_0;
 | |
|         s->in_cubemap_face_rotation[TOP_MIDDLE]    = ROT_0;
 | |
|         s->in_cubemap_face_rotation[TOP_RIGHT]     = ROT_0;
 | |
|         s->in_cubemap_face_rotation[BOTTOM_LEFT]   = ROT_270;
 | |
|         s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
 | |
|         s->in_cubemap_face_rotation[BOTTOM_RIGHT]  = ROT_270;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing equi-angular cubemap output format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_eac_out(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->out_cubemap_direction_order[TOP_LEFT]      = LEFT;
 | |
|     s->out_cubemap_direction_order[TOP_MIDDLE]    = FRONT;
 | |
|     s->out_cubemap_direction_order[TOP_RIGHT]     = RIGHT;
 | |
|     s->out_cubemap_direction_order[BOTTOM_LEFT]   = DOWN;
 | |
|     s->out_cubemap_direction_order[BOTTOM_MIDDLE] = BACK;
 | |
|     s->out_cubemap_direction_order[BOTTOM_RIGHT]  = UP;
 | |
| 
 | |
|     s->out_cubemap_face_rotation[TOP_LEFT]      = ROT_0;
 | |
|     s->out_cubemap_face_rotation[TOP_MIDDLE]    = ROT_0;
 | |
|     s->out_cubemap_face_rotation[TOP_RIGHT]     = ROT_0;
 | |
|     s->out_cubemap_face_rotation[BOTTOM_LEFT]   = ROT_270;
 | |
|     s->out_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
 | |
|     s->out_cubemap_face_rotation[BOTTOM_RIGHT]  = ROT_270;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in equi-angular cubemap format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int eac_to_xyz(const V360Context *s,
 | |
|                       int i, int j, int width, int height,
 | |
|                       float *vec)
 | |
| {
 | |
|     const float pixel_pad = 2;
 | |
|     const float u_pad = pixel_pad / width;
 | |
|     const float v_pad = pixel_pad / height;
 | |
| 
 | |
|     int u_face, v_face, face;
 | |
| 
 | |
|     float l_x, l_y, l_z;
 | |
| 
 | |
|     float uf = (i + 0.5f) / width;
 | |
|     float vf = (j + 0.5f) / height;
 | |
| 
 | |
|     // EAC has 2-pixel padding on faces except between faces on the same row
 | |
|     // Padding pixels seems not to be stretched with tangent as regular pixels
 | |
|     // Formulas below approximate original padding as close as I could get experimentally
 | |
| 
 | |
|     // Horizontal padding
 | |
|     uf = 3.f * (uf - u_pad) / (1.f - 2.f * u_pad);
 | |
|     if (uf < 0.f) {
 | |
|         u_face = 0;
 | |
|         uf -= 0.5f;
 | |
|     } else if (uf >= 3.f) {
 | |
|         u_face = 2;
 | |
|         uf -= 2.5f;
 | |
|     } else {
 | |
|         u_face = floorf(uf);
 | |
|         uf = fmodf(uf, 1.f) - 0.5f;
 | |
|     }
 | |
| 
 | |
|     // Vertical padding
 | |
|     v_face = floorf(vf * 2.f);
 | |
|     vf = (vf - v_pad - 0.5f * v_face) / (0.5f - 2.f * v_pad) - 0.5f;
 | |
| 
 | |
|     if (uf >= -0.5f && uf < 0.5f) {
 | |
|         uf = tanf(M_PI_2 * uf);
 | |
|     } else {
 | |
|         uf = 2.f * uf;
 | |
|     }
 | |
|     if (vf >= -0.5f && vf < 0.5f) {
 | |
|         vf = tanf(M_PI_2 * vf);
 | |
|     } else {
 | |
|         vf = 2.f * vf;
 | |
|     }
 | |
| 
 | |
|     face = u_face + 3 * v_face;
 | |
| 
 | |
|     switch (face) {
 | |
|     case TOP_LEFT:
 | |
|         l_x = -1.f;
 | |
|         l_y =  vf;
 | |
|         l_z =  uf;
 | |
|         break;
 | |
|     case TOP_MIDDLE:
 | |
|         l_x =  uf;
 | |
|         l_y =  vf;
 | |
|         l_z =  1.f;
 | |
|         break;
 | |
|     case TOP_RIGHT:
 | |
|         l_x =  1.f;
 | |
|         l_y =  vf;
 | |
|         l_z = -uf;
 | |
|         break;
 | |
|     case BOTTOM_LEFT:
 | |
|         l_x = -vf;
 | |
|         l_y =  1.f;
 | |
|         l_z = -uf;
 | |
|         break;
 | |
|     case BOTTOM_MIDDLE:
 | |
|         l_x = -vf;
 | |
|         l_y = -uf;
 | |
|         l_z = -1.f;
 | |
|         break;
 | |
|     case BOTTOM_RIGHT:
 | |
|         l_x = -vf;
 | |
|         l_y = -1.f;
 | |
|         l_z =  uf;
 | |
|         break;
 | |
|     default:
 | |
|         av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     vec[0] = l_x;
 | |
|     vec[1] = l_y;
 | |
|     vec[2] = l_z;
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in equi-angular cubemap format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_eac(const V360Context *s,
 | |
|                       const float *vec, int width, int height,
 | |
|                       int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float pixel_pad = 2;
 | |
|     const float u_pad = pixel_pad / width;
 | |
|     const float v_pad = pixel_pad / height;
 | |
| 
 | |
|     float uf, vf;
 | |
|     int ui, vi;
 | |
|     int direction, face;
 | |
|     int u_face, v_face;
 | |
| 
 | |
|     xyz_to_cube(s, vec, &uf, &vf, &direction);
 | |
| 
 | |
|     face = s->in_cubemap_face_order[direction];
 | |
|     u_face = face % 3;
 | |
|     v_face = face / 3;
 | |
| 
 | |
|     uf = M_2_PI * atanf(uf) + 0.5f;
 | |
|     vf = M_2_PI * atanf(vf) + 0.5f;
 | |
| 
 | |
|     // These formulas are inversed from eac_to_xyz ones
 | |
|     uf = (uf + u_face) * (1.f - 2.f * u_pad) / 3.f + u_pad;
 | |
|     vf = vf * (0.5f - 2.f * v_pad) + v_pad + 0.5f * v_face;
 | |
| 
 | |
|     uf *= width;
 | |
|     vf *= height;
 | |
| 
 | |
|     uf -= 0.5f;
 | |
|     vf -= 0.5f;
 | |
| 
 | |
|     ui = floorf(uf);
 | |
|     vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = av_clip(ui + j - 1, 0, width  - 1);
 | |
|             vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing flat output format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_flat_out(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->flat_range[0] = tanf(0.5f * s->h_fov * M_PI / 180.f);
 | |
|     s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in flat format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int flat_to_xyz(const V360Context *s,
 | |
|                        int i, int j, int width, int height,
 | |
|                        float *vec)
 | |
| {
 | |
|     const float l_x = s->flat_range[0] * ((2.f * i + 0.5f) / width  - 1.f);
 | |
|     const float l_y = s->flat_range[1] * ((2.f * j + 0.5f) / height - 1.f);
 | |
| 
 | |
|     vec[0] = l_x;
 | |
|     vec[1] = l_y;
 | |
|     vec[2] = 1.f;
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing fisheye output format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_fisheye_out(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->flat_range[0] = s->h_fov / 180.f;
 | |
|     s->flat_range[1] = s->v_fov / 180.f;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in fisheye format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int fisheye_to_xyz(const V360Context *s,
 | |
|                           int i, int j, int width, int height,
 | |
|                           float *vec)
 | |
| {
 | |
|     const float uf = s->flat_range[0] * ((2.f * i) / width  - 1.f);
 | |
|     const float vf = s->flat_range[1] * ((2.f * j + 1.f) / height - 1.f);
 | |
| 
 | |
|     const float phi   = atan2f(vf, uf);
 | |
|     const float theta = M_PI_2 * (1.f - hypotf(uf, vf));
 | |
| 
 | |
|     const float sin_phi   = sinf(phi);
 | |
|     const float cos_phi   = cosf(phi);
 | |
|     const float sin_theta = sinf(theta);
 | |
|     const float cos_theta = cosf(theta);
 | |
| 
 | |
|     vec[0] = cos_theta * cos_phi;
 | |
|     vec[1] = cos_theta * sin_phi;
 | |
|     vec[2] = sin_theta;
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing fisheye input format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_fisheye_in(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->iflat_range[0] = s->ih_fov / 180.f;
 | |
|     s->iflat_range[1] = s->iv_fov / 180.f;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in fisheye format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_fisheye(const V360Context *s,
 | |
|                           const float *vec, int width, int height,
 | |
|                           int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float h   = hypotf(vec[0], vec[1]);
 | |
|     const float lh  = h > 0.f ? h : 1.f;
 | |
|     const float phi = atan2f(h, vec[2]) / M_PI;
 | |
| 
 | |
|     float uf = vec[0] / lh * phi * s->input_mirror_modifier[0] / s->iflat_range[0];
 | |
|     float vf = vec[1] / lh * phi * s->input_mirror_modifier[1] / s->iflat_range[1];
 | |
| 
 | |
|     const int visible = hypotf(uf, vf) <= 0.5f;
 | |
|     int ui, vi;
 | |
| 
 | |
|     uf = (uf + 0.5f) * width;
 | |
|     vf = (vf + 0.5f) * height;
 | |
| 
 | |
|     ui = floorf(uf);
 | |
|     vi = floorf(vf);
 | |
| 
 | |
|     *du = visible ? uf - ui : 0.f;
 | |
|     *dv = visible ? vf - vi : 0.f;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = visible ? av_clip(ui + j - 1, 0, width  - 1) : 0;
 | |
|             vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return visible;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in pannini format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int pannini_to_xyz(const V360Context *s,
 | |
|                           int i, int j, int width, int height,
 | |
|                           float *vec)
 | |
| {
 | |
|     const float uf = ((2.f * i + 1.f) / width  - 1.f);
 | |
|     const float vf = ((2.f * j + 1.f) / height - 1.f);
 | |
| 
 | |
|     const float d = s->h_fov;
 | |
|     const float k = uf * uf / ((d + 1.f) * (d + 1.f));
 | |
|     const float dscr = k * k * d * d - (k + 1.f) * (k * d * d - 1.f);
 | |
|     const float clon = (-k * d + sqrtf(dscr)) / (k + 1.f);
 | |
|     const float S = (d + 1.f) / (d + clon);
 | |
|     const float lon = atan2f(uf, S * clon);
 | |
|     const float lat = atan2f(vf, S);
 | |
| 
 | |
|     vec[0] = sinf(lon) * cosf(lat);
 | |
|     vec[1] = sinf(lat);
 | |
|     vec[2] = cosf(lon) * cosf(lat);
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in pannini format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_pannini(const V360Context *s,
 | |
|                           const float *vec, int width, int height,
 | |
|                           int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float phi   = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
 | |
|     const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
 | |
| 
 | |
|     const float d = s->ih_fov;
 | |
|     const float S = (d + 1.f) / (d + cosf(phi));
 | |
| 
 | |
|     const float x = S * sinf(phi);
 | |
|     const float y = S * tanf(theta);
 | |
| 
 | |
|     const float uf = (x + 1.f) * width  / 2.f;
 | |
|     const float vf = (y + 1.f) * height / 2.f;
 | |
| 
 | |
|     const int ui = floorf(uf);
 | |
|     const int vi = floorf(vf);
 | |
| 
 | |
|     const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width && vec[2] >= 0.f;
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = visible ? av_clip(ui + j - 1, 0, width  - 1) : 0;
 | |
|             vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return visible;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing cylindrical output format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_cylindrical_out(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->flat_range[0] = M_PI * s->h_fov / 360.f;
 | |
|     s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in cylindrical format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int cylindrical_to_xyz(const V360Context *s,
 | |
|                               int i, int j, int width, int height,
 | |
|                               float *vec)
 | |
| {
 | |
|     const float uf = s->flat_range[0] * ((2.f * i + 1.f) / width  - 1.f);
 | |
|     const float vf = s->flat_range[1] * ((2.f * j + 1.f) / height - 1.f);
 | |
| 
 | |
|     const float phi   = uf;
 | |
|     const float theta = atanf(vf);
 | |
| 
 | |
|     const float sin_phi   = sinf(phi);
 | |
|     const float cos_phi   = cosf(phi);
 | |
|     const float sin_theta = sinf(theta);
 | |
|     const float cos_theta = cosf(theta);
 | |
| 
 | |
|     vec[0] = cos_theta * sin_phi;
 | |
|     vec[1] = sin_theta;
 | |
|     vec[2] = cos_theta * cos_phi;
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Prepare data for processing cylindrical input format.
 | |
|  *
 | |
|  * @param ctx filter context
 | |
|  *
 | |
|  * @return error code
 | |
|  */
 | |
| static int prepare_cylindrical_in(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     s->iflat_range[0] = M_PI * s->ih_fov / 360.f;
 | |
|     s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in cylindrical format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_cylindrical(const V360Context *s,
 | |
|                               const float *vec, int width, int height,
 | |
|                               int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float phi   = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0] / s->iflat_range[0];
 | |
|     const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
 | |
| 
 | |
|     const float uf = (phi + 1.f) * (width - 1) / 2.f;
 | |
|     const float vf = (tanf(theta) / s->iflat_range[1] + 1.f) * height / 2.f;
 | |
| 
 | |
|     const int ui = floorf(uf);
 | |
|     const int vi = floorf(vf);
 | |
| 
 | |
|     const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width &&
 | |
|                         theta <=  M_PI * s->iv_fov / 180.f &&
 | |
|                         theta >= -M_PI * s->iv_fov / 180.f;
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = visible ? av_clip(ui + j - 1, 0, width  - 1) : 0;
 | |
|             vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return visible;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in perspective format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int perspective_to_xyz(const V360Context *s,
 | |
|                               int i, int j, int width, int height,
 | |
|                               float *vec)
 | |
| {
 | |
|     const float uf = ((2.f * i + 1.f) / width  - 1.f);
 | |
|     const float vf = ((2.f * j + 1.f) / height - 1.f);
 | |
|     const float rh = hypotf(uf, vf);
 | |
|     const float sinzz = 1.f - rh * rh;
 | |
|     const float h = 1.f + s->v_fov;
 | |
|     const float sinz = (h - sqrtf(sinzz)) / (h / rh + rh / h);
 | |
|     const float sinz2 = sinz * sinz;
 | |
| 
 | |
|     if (sinz2 <= 1.f) {
 | |
|         const float cosz = sqrtf(1.f - sinz2);
 | |
| 
 | |
|         const float theta = asinf(cosz);
 | |
|         const float phi   = atan2f(uf, vf);
 | |
| 
 | |
|         const float sin_phi   = sinf(phi);
 | |
|         const float cos_phi   = cosf(phi);
 | |
|         const float sin_theta = sinf(theta);
 | |
|         const float cos_theta = cosf(theta);
 | |
| 
 | |
|         vec[0] = cos_theta * sin_phi;
 | |
|         vec[1] = sin_theta;
 | |
|         vec[2] = cos_theta * cos_phi;
 | |
|     } else {
 | |
|         vec[0] = 0.f;
 | |
|         vec[1] = 1.f;
 | |
|         vec[2] = 0.f;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     normalize_vector(vec);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in tetrahedron format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int tetrahedron_to_xyz(const V360Context *s,
 | |
|                               int i, int j, int width, int height,
 | |
|                               float *vec)
 | |
| {
 | |
|     const float uf = (float)i / width;
 | |
|     const float vf = (float)j / height;
 | |
| 
 | |
|     vec[0] = uf < 0.5f ? uf * 4.f - 1.f : 3.f - uf * 4.f;
 | |
|     vec[1] = 1.f - vf * 2.f;
 | |
|     vec[2] = 2.f * fabsf(1.f - fabsf(1.f - uf * 2.f + vf)) - 1.f;
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in tetrahedron format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_tetrahedron(const V360Context *s,
 | |
|                               const float *vec, int width, int height,
 | |
|                               int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float d0 = vec[0] * 1.f + vec[1] * 1.f + vec[2] *-1.f;
 | |
|     const float d1 = vec[0] *-1.f + vec[1] *-1.f + vec[2] *-1.f;
 | |
|     const float d2 = vec[0] * 1.f + vec[1] *-1.f + vec[2] * 1.f;
 | |
|     const float d3 = vec[0] *-1.f + vec[1] * 1.f + vec[2] * 1.f;
 | |
|     const float d = FFMAX(d0, FFMAX3(d1, d2, d3));
 | |
| 
 | |
|     float uf, vf, x, y, z;
 | |
|     int ui, vi;
 | |
| 
 | |
|     x =  vec[0] / d;
 | |
|     y =  vec[1] / d;
 | |
|     z = -vec[2] / d;
 | |
| 
 | |
|     vf = 0.5f - y * 0.5f * s->input_mirror_modifier[1];
 | |
| 
 | |
|     if ((x + y >= 0.f &&  y + z >= 0.f && -z - x <= 0.f) ||
 | |
|         (x + y <= 0.f && -y + z >= 0.f &&  z - x >= 0.f)) {
 | |
|         uf = 0.25f * x * s->input_mirror_modifier[0] + 0.25f;
 | |
|     }  else {
 | |
|         uf = 0.75f - 0.25f * x * s->input_mirror_modifier[0];
 | |
|     }
 | |
| 
 | |
|     uf *= width;
 | |
|     vf *= height;
 | |
| 
 | |
|     ui = floorf(uf);
 | |
|     vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = reflectx(ui + j - 1, vi + i - 1, width, height);
 | |
|             vs[i][j] = reflecty(vi + i - 1, height);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in dual fisheye format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int dfisheye_to_xyz(const V360Context *s,
 | |
|                            int i, int j, int width, int height,
 | |
|                            float *vec)
 | |
| {
 | |
|     const float ew = width / 2.f;
 | |
|     const float eh = height;
 | |
| 
 | |
|     const int ei = i >= ew ? i - ew : i;
 | |
|     const float m = i >= ew ? 1.f : -1.f;
 | |
| 
 | |
|     const float uf = s->flat_range[0] * ((2.f * ei) / ew - 1.f);
 | |
|     const float vf = s->flat_range[1] * ((2.f * j + 1.f) / eh - 1.f);
 | |
| 
 | |
|     const float h     = hypotf(uf, vf);
 | |
|     const float lh    = h > 0.f ? h : 1.f;
 | |
|     const float theta = m * M_PI_2 * (1.f - h);
 | |
| 
 | |
|     const float sin_theta = sinf(theta);
 | |
|     const float cos_theta = cosf(theta);
 | |
| 
 | |
|     vec[0] = cos_theta * m * uf / lh;
 | |
|     vec[1] = cos_theta *     vf / lh;
 | |
|     vec[2] = sin_theta;
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in dual fisheye format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_dfisheye(const V360Context *s,
 | |
|                            const float *vec, int width, int height,
 | |
|                            int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float ew = width / 2.f;
 | |
|     const float eh = height;
 | |
| 
 | |
|     const float h     = hypotf(vec[0], vec[1]);
 | |
|     const float lh    = h > 0.f ? h : 1.f;
 | |
|     const float theta = acosf(fabsf(vec[2])) / M_PI;
 | |
| 
 | |
|     float uf = (theta * (vec[0] / lh) * s->input_mirror_modifier[0] / s->iflat_range[0] + 0.5f) * ew;
 | |
|     float vf = (theta * (vec[1] / lh) * s->input_mirror_modifier[1] / s->iflat_range[1] + 0.5f) * eh;
 | |
| 
 | |
|     int ui, vi;
 | |
|     int u_shift;
 | |
| 
 | |
|     if (vec[2] >= 0.f) {
 | |
|         u_shift = ceilf(ew);
 | |
|     } else {
 | |
|         u_shift = 0;
 | |
|         uf = ew - uf;
 | |
|     }
 | |
| 
 | |
|     ui = floorf(uf);
 | |
|     vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = av_clip(u_shift + ui + j - 1, 0, width  - 1);
 | |
|             vs[i][j] = av_clip(          vi + i - 1, 0, height - 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in barrel facebook's format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int barrel_to_xyz(const V360Context *s,
 | |
|                          int i, int j, int width, int height,
 | |
|                          float *vec)
 | |
| {
 | |
|     const float scale = 0.99f;
 | |
|     float l_x, l_y, l_z;
 | |
| 
 | |
|     if (i < 4 * width / 5) {
 | |
|         const float theta_range = M_PI_4;
 | |
| 
 | |
|         const int ew = 4 * width / 5;
 | |
|         const int eh = height;
 | |
| 
 | |
|         const float phi   = ((2.f * i) / ew - 1.f) * M_PI        / scale;
 | |
|         const float theta = ((2.f * j) / eh - 1.f) * theta_range / scale;
 | |
| 
 | |
|         const float sin_phi   = sinf(phi);
 | |
|         const float cos_phi   = cosf(phi);
 | |
|         const float sin_theta = sinf(theta);
 | |
|         const float cos_theta = cosf(theta);
 | |
| 
 | |
|         l_x = cos_theta * sin_phi;
 | |
|         l_y = sin_theta;
 | |
|         l_z = cos_theta * cos_phi;
 | |
|     } else {
 | |
|         const int ew = width  / 5;
 | |
|         const int eh = height / 2;
 | |
| 
 | |
|         float uf, vf;
 | |
| 
 | |
|         if (j < eh) {   // UP
 | |
|             uf = 2.f * (i - 4 * ew) / ew - 1.f;
 | |
|             vf = 2.f * (j         ) / eh - 1.f;
 | |
| 
 | |
|             uf /= scale;
 | |
|             vf /= scale;
 | |
| 
 | |
|             l_x =  uf;
 | |
|             l_y = -1.f;
 | |
|             l_z =  vf;
 | |
|         } else {            // DOWN
 | |
|             uf = 2.f * (i - 4 * ew) / ew - 1.f;
 | |
|             vf = 2.f * (j -     eh) / eh - 1.f;
 | |
| 
 | |
|             uf /= scale;
 | |
|             vf /= scale;
 | |
| 
 | |
|             l_x =  uf;
 | |
|             l_y =  1.f;
 | |
|             l_z = -vf;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     vec[0] = l_x;
 | |
|     vec[1] = l_y;
 | |
|     vec[2] = l_z;
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in barrel facebook's format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_barrel(const V360Context *s,
 | |
|                          const float *vec, int width, int height,
 | |
|                          int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float scale = 0.99f;
 | |
| 
 | |
|     const float phi   = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
 | |
|     const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
 | |
|     const float theta_range = M_PI_4;
 | |
| 
 | |
|     int ew, eh;
 | |
|     int u_shift, v_shift;
 | |
|     float uf, vf;
 | |
|     int ui, vi;
 | |
| 
 | |
|     if (theta > -theta_range && theta < theta_range) {
 | |
|         ew = 4 * width / 5;
 | |
|         eh = height;
 | |
| 
 | |
|         u_shift = s->ih_flip ? width / 5 : 0;
 | |
|         v_shift = 0;
 | |
| 
 | |
|         uf = (phi   / M_PI        * scale + 1.f) * ew / 2.f;
 | |
|         vf = (theta / theta_range * scale + 1.f) * eh / 2.f;
 | |
|     } else {
 | |
|         ew = width  / 5;
 | |
|         eh = height / 2;
 | |
| 
 | |
|         u_shift = s->ih_flip ? 0 : 4 * ew;
 | |
| 
 | |
|         if (theta < 0.f) {  // UP
 | |
|             uf = -vec[0] / vec[1];
 | |
|             vf = -vec[2] / vec[1];
 | |
|             v_shift = 0;
 | |
|         } else {            // DOWN
 | |
|             uf =  vec[0] / vec[1];
 | |
|             vf = -vec[2] / vec[1];
 | |
|             v_shift = eh;
 | |
|         }
 | |
| 
 | |
|         uf *= s->input_mirror_modifier[0] * s->input_mirror_modifier[1];
 | |
|         vf *= s->input_mirror_modifier[1];
 | |
| 
 | |
|         uf = 0.5f * ew * (uf * scale + 1.f);
 | |
|         vf = 0.5f * eh * (vf * scale + 1.f);
 | |
|     }
 | |
| 
 | |
|     ui = floorf(uf);
 | |
|     vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1);
 | |
|             vs[i][j] = v_shift + av_clip(vi + i - 1, 0, eh - 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in barrel split facebook's format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_barrelsplit(const V360Context *s,
 | |
|                               const float *vec, int width, int height,
 | |
|                               int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     const float phi   = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
 | |
|     const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
 | |
| 
 | |
|     const float theta_range = M_PI_4;
 | |
| 
 | |
|     int ew, eh;
 | |
|     int u_shift, v_shift;
 | |
|     float uf, vf;
 | |
|     int ui, vi;
 | |
| 
 | |
|     if (theta >= -theta_range && theta <= theta_range) {
 | |
|         const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width * 2.f / 3.f) : 1.f - s->in_pad;
 | |
|         const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 2.f) : 1.f - s->in_pad;
 | |
| 
 | |
|         ew = width / 3 * 2;
 | |
|         eh = height / 2;
 | |
| 
 | |
|         u_shift = s->ih_flip ? width / 3 : 0;
 | |
|         v_shift = phi >= M_PI_2 || phi < -M_PI_2 ? eh : 0;
 | |
| 
 | |
|         uf = fmodf(phi, M_PI_2) / M_PI_2;
 | |
|         vf = theta / M_PI_4;
 | |
| 
 | |
|         if (v_shift)
 | |
|             uf = uf >= 0.f ? fmodf(uf - 1.f, 1.f) : fmodf(uf + 1.f, 1.f);
 | |
| 
 | |
|         uf = (uf * scalew + 1.f) * width  / 3.f;
 | |
|         vf = (vf * scaleh + 1.f) * height / 4.f;
 | |
|     } else {
 | |
|         const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width  / 3.f) : 1.f - s->in_pad;
 | |
|         const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 4.f) : 1.f - s->in_pad;
 | |
|         int v_offset = 0;
 | |
| 
 | |
|         ew = width  / 3;
 | |
|         eh = height / 4;
 | |
| 
 | |
|         u_shift = s->ih_flip ? 0 : 2 * ew;
 | |
| 
 | |
|         if (theta <= 0.f && theta >= -M_PI_2 &&
 | |
|             phi <= M_PI_2 && phi >= -M_PI_2) {
 | |
|             uf = -vec[0] / vec[1];
 | |
|             vf = -vec[2] / vec[1];
 | |
|             v_shift = 0;
 | |
|             v_offset = -eh;
 | |
|         } else if (theta >= 0.f && theta <= M_PI_2 &&
 | |
|                    phi <= M_PI_2 && phi >= -M_PI_2) {
 | |
|             uf =  vec[0] / vec[1];
 | |
|             vf = -vec[2] / vec[1];
 | |
|             v_shift = height * 0.25f;
 | |
|         } else if (theta <= 0.f && theta >= -M_PI_2) {
 | |
|             uf =  vec[0] / vec[1];
 | |
|             vf =  vec[2] / vec[1];
 | |
|             v_shift = height * 0.5f;
 | |
|             v_offset = -eh;
 | |
|         } else {
 | |
|             uf = -vec[0] / vec[1];
 | |
|             vf =  vec[2] / vec[1];
 | |
|             v_shift = height * 0.75f;
 | |
|         }
 | |
| 
 | |
|         uf *= s->input_mirror_modifier[0] * s->input_mirror_modifier[1];
 | |
|         vf *= s->input_mirror_modifier[1];
 | |
| 
 | |
|         uf = 0.5f * width / 3.f * (uf * scalew + 1.f);
 | |
|         vf = height * 0.25f * (vf * scaleh + 1.f) + v_offset;
 | |
|     }
 | |
| 
 | |
|     ui = floorf(uf);
 | |
|     vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1);
 | |
|             vs[i][j] = v_shift + av_clip(vi + i - 1, 0, eh - 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in barrel split facebook's format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int barrelsplit_to_xyz(const V360Context *s,
 | |
|                               int i, int j, int width, int height,
 | |
|                               float *vec)
 | |
| {
 | |
|     const float x = (i + 0.5f) / width;
 | |
|     const float y = (j + 0.5f) / height;
 | |
|     float l_x, l_y, l_z;
 | |
| 
 | |
|     if (x < 2.f / 3.f) {
 | |
|         const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width * 2.f / 3.f) : 1.f - s->out_pad;
 | |
|         const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 2.f) : 1.f - s->out_pad;
 | |
| 
 | |
|         const float back = floorf(y * 2.f);
 | |
| 
 | |
|         const float phi   = ((3.f / 2.f * x - 0.5f) / scalew - back) * M_PI;
 | |
|         const float theta = (y - 0.25f - 0.5f * back) / scaleh * M_PI;
 | |
| 
 | |
|         const float sin_phi   = sinf(phi);
 | |
|         const float cos_phi   = cosf(phi);
 | |
|         const float sin_theta = sinf(theta);
 | |
|         const float cos_theta = cosf(theta);
 | |
| 
 | |
|         l_x = cos_theta * sin_phi;
 | |
|         l_y = sin_theta;
 | |
|         l_z = cos_theta * cos_phi;
 | |
|     } else {
 | |
|         const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width  / 3.f) : 1.f - s->out_pad;
 | |
|         const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 4.f) : 1.f - s->out_pad;
 | |
| 
 | |
|         const int face = floorf(y * 4.f);
 | |
|         float uf, vf;
 | |
| 
 | |
|         uf = x * 3.f - 2.f;
 | |
| 
 | |
|         switch (face) {
 | |
|         case 0:
 | |
|             vf = y * 2.f;
 | |
|             uf = 1.f - uf;
 | |
|             vf = 0.5f - vf;
 | |
| 
 | |
|             l_x = (0.5f - uf) / scalew;
 | |
|             l_y = -0.5f;
 | |
|             l_z = (0.5f - vf) / scaleh;
 | |
|             break;
 | |
|         case 1:
 | |
|             vf = y * 2.f;
 | |
|             uf = 1.f - uf;
 | |
|             vf = 1.f - (vf - 0.5f);
 | |
| 
 | |
|             l_x = (0.5f - uf) / scalew;
 | |
|             l_y =  0.5f;
 | |
|             l_z = (-0.5f + vf) / scaleh;
 | |
|             break;
 | |
|         case 2:
 | |
|             vf = y * 2.f - 0.5f;
 | |
|             vf = 1.f - (1.f - vf);
 | |
| 
 | |
|             l_x = (0.5f - uf) / scalew;
 | |
|             l_y = -0.5f;
 | |
|             l_z = (0.5f - vf) / scaleh;
 | |
|             break;
 | |
|         case 3:
 | |
|             vf = y * 2.f - 1.5f;
 | |
| 
 | |
|             l_x = (0.5f - uf) / scalew;
 | |
|             l_y =  0.5f;
 | |
|             l_z = (-0.5f + vf) / scaleh;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     vec[0] = l_x;
 | |
|     vec[1] = l_y;
 | |
|     vec[2] = l_z;
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate 3D coordinates on sphere for corresponding frame position in tspyramid format.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param i horizontal position on frame [0, width)
 | |
|  * @param j vertical position on frame [0, height)
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param vec coordinates on sphere
 | |
|  */
 | |
| static int tspyramid_to_xyz(const V360Context *s,
 | |
|                             int i, int j, int width, int height,
 | |
|                             float *vec)
 | |
| {
 | |
|     const float x = (i + 0.5f) / width;
 | |
|     const float y = (j + 0.5f) / height;
 | |
| 
 | |
|     if (x < 0.5f) {
 | |
|         vec[0] =  x * 4.f - 1.f;
 | |
|         vec[1] = (y * 2.f - 1.f);
 | |
|         vec[2] = 1.f;
 | |
|     } else if (x >= 0.6875f && x < 0.8125f &&
 | |
|                y >= 0.375f  && y < 0.625f) {
 | |
|         vec[0] = -(x - 0.6875f) * 16.f + 1.f;
 | |
|         vec[1] = (y - 0.375f) * 8.f - 1.f;
 | |
|         vec[2] = -1.f;
 | |
|     } else if (0.5f <= x && x < 0.6875f &&
 | |
|                ((0.f <= y && y < 0.375f && y >= 2.f * (x - 0.5f)) ||
 | |
|                 (0.375f <= y && y < 0.625f) ||
 | |
|                 (0.625f <= y && y < 1.f && y <= 2.f * (1.f - x)))) {
 | |
|         vec[0] =  1.f;
 | |
|         vec[1] =  2.f * (y - 2.f * x + 1.f) / (3.f - 4.f * x) - 1.f;
 | |
|         vec[2] = -2.f * (x - 0.5f) / 0.1875f + 1.f;
 | |
|     } else if (0.8125f <= x && x < 1.f &&
 | |
|                ((0.f <= y && y < 0.375f && x >= (1.f - y / 2.f)) ||
 | |
|                 (0.375f <= y && y < 0.625f) ||
 | |
|                 (0.625f <= y && y < 1.f && y <= (2.f * x - 1.f)))) {
 | |
|         vec[0] = -1.f;
 | |
|         vec[1] =  2.f * (y + 2.f * x - 2.f) / (4.f * x - 3.f) - 1.f;
 | |
|         vec[2] =  2.f * (x - 0.8125f) / 0.1875f - 1.f;
 | |
|     } else if (0.f <= y && y < 0.375f &&
 | |
|                ((0.5f <= x && x < 0.8125f && y < 2.f * (x - 0.5f)) ||
 | |
|                 (0.6875f <= x && x < 0.8125f) ||
 | |
|                 (0.8125f <= x && x < 1.f && x < (1.f - y / 2.f)))) {
 | |
|         vec[0] =  2.f * (1.f - x - 0.5f * y) / (0.5f - y) - 1.f;
 | |
|         vec[1] = -1.f;
 | |
|         vec[2] =  2.f * (0.375f - y) / 0.375f - 1.f;
 | |
|     } else {
 | |
|         vec[0] =  2.f * (0.5f - x + 0.5f * y) / (y - 0.5f) - 1.f;
 | |
|         vec[1] =  1.f;
 | |
|         vec[2] = -2.f * (1.f - y) / 0.375f + 1.f;
 | |
|     }
 | |
| 
 | |
|     normalize_vector(vec);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate frame position in tspyramid format for corresponding 3D coordinates on sphere.
 | |
|  *
 | |
|  * @param s filter private context
 | |
|  * @param vec coordinates on sphere
 | |
|  * @param width frame width
 | |
|  * @param height frame height
 | |
|  * @param us horizontal coordinates for interpolation window
 | |
|  * @param vs vertical coordinates for interpolation window
 | |
|  * @param du horizontal relative coordinate
 | |
|  * @param dv vertical relative coordinate
 | |
|  */
 | |
| static int xyz_to_tspyramid(const V360Context *s,
 | |
|                             const float *vec, int width, int height,
 | |
|                             int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 | |
| {
 | |
|     float uf, vf;
 | |
|     int ui, vi;
 | |
|     int face;
 | |
| 
 | |
|     xyz_to_cube(s, vec, &uf, &vf, &face);
 | |
| 
 | |
|     uf = (uf + 1.f) * 0.5f;
 | |
|     vf = (vf + 1.f) * 0.5f;
 | |
| 
 | |
|     switch (face) {
 | |
|     case UP:
 | |
|         uf = 0.1875f * vf - 0.375f * uf * vf - 0.125f * uf + 0.8125f;
 | |
|         vf = 0.375f - 0.375f * vf;
 | |
|         break;
 | |
|     case FRONT:
 | |
|         uf = 0.5f * uf;
 | |
|         break;
 | |
|     case DOWN:
 | |
|         uf = 1.f - 0.1875f * vf - 0.5f * uf + 0.375f * uf * vf;
 | |
|         vf = 1.f - 0.375f * vf;
 | |
|         break;
 | |
|     case LEFT:
 | |
|         vf = 0.25f * vf + 0.75f * uf * vf - 0.375f * uf + 0.375f;
 | |
|         uf = 0.1875f * uf + 0.8125f;
 | |
|         break;
 | |
|     case RIGHT:
 | |
|         vf = 0.375f * uf - 0.75f * uf * vf + vf;
 | |
|         uf = 0.1875f * uf + 0.5f;
 | |
|         break;
 | |
|     case BACK:
 | |
|         uf = 0.125f * uf + 0.6875f;
 | |
|         vf = 0.25f * vf + 0.375f;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     uf *= width;
 | |
|     vf *= height;
 | |
| 
 | |
|     ui = floorf(uf);
 | |
|     vi = floorf(vf);
 | |
| 
 | |
|     *du = uf - ui;
 | |
|     *dv = vf - vi;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             us[i][j] = reflectx(ui + j - 1, vi + i - 1, width, height);
 | |
|             vs[i][j] = reflecty(vi + i - 1, height);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void multiply_matrix(float c[3][3], const float a[3][3], const float b[3][3])
 | |
| {
 | |
|     for (int i = 0; i < 3; i++) {
 | |
|         for (int j = 0; j < 3; j++) {
 | |
|             float sum = 0.f;
 | |
| 
 | |
|             for (int k = 0; k < 3; k++)
 | |
|                 sum += a[i][k] * b[k][j];
 | |
| 
 | |
|             c[i][j] = sum;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate rotation matrix for yaw/pitch/roll angles.
 | |
|  */
 | |
| static inline void calculate_rotation_matrix(float yaw, float pitch, float roll,
 | |
|                                              float rot_mat[3][3],
 | |
|                                              const int rotation_order[3])
 | |
| {
 | |
|     const float yaw_rad   = yaw   * M_PI / 180.f;
 | |
|     const float pitch_rad = pitch * M_PI / 180.f;
 | |
|     const float roll_rad  = roll  * M_PI / 180.f;
 | |
| 
 | |
|     const float sin_yaw   = sinf(yaw_rad);
 | |
|     const float cos_yaw   = cosf(yaw_rad);
 | |
|     const float sin_pitch = sinf(pitch_rad);
 | |
|     const float cos_pitch = cosf(pitch_rad);
 | |
|     const float sin_roll  = sinf(roll_rad);
 | |
|     const float cos_roll  = cosf(roll_rad);
 | |
| 
 | |
|     float m[3][3][3];
 | |
|     float temp[3][3];
 | |
| 
 | |
|     m[0][0][0] =  cos_yaw;  m[0][0][1] = 0;          m[0][0][2] =  sin_yaw;
 | |
|     m[0][1][0] =  0;        m[0][1][1] = 1;          m[0][1][2] =  0;
 | |
|     m[0][2][0] = -sin_yaw;  m[0][2][1] = 0;          m[0][2][2] =  cos_yaw;
 | |
| 
 | |
|     m[1][0][0] = 1;         m[1][0][1] = 0;          m[1][0][2] =  0;
 | |
|     m[1][1][0] = 0;         m[1][1][1] = cos_pitch;  m[1][1][2] = -sin_pitch;
 | |
|     m[1][2][0] = 0;         m[1][2][1] = sin_pitch;  m[1][2][2] =  cos_pitch;
 | |
| 
 | |
|     m[2][0][0] = cos_roll;  m[2][0][1] = -sin_roll;  m[2][0][2] =  0;
 | |
|     m[2][1][0] = sin_roll;  m[2][1][1] =  cos_roll;  m[2][1][2] =  0;
 | |
|     m[2][2][0] = 0;         m[2][2][1] =  0;         m[2][2][2] =  1;
 | |
| 
 | |
|     multiply_matrix(temp, m[rotation_order[0]], m[rotation_order[1]]);
 | |
|     multiply_matrix(rot_mat, temp, m[rotation_order[2]]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Rotate vector with given rotation matrix.
 | |
|  *
 | |
|  * @param rot_mat rotation matrix
 | |
|  * @param vec vector
 | |
|  */
 | |
| static inline void rotate(const float rot_mat[3][3],
 | |
|                           float *vec)
 | |
| {
 | |
|     const float x_tmp = vec[0] * rot_mat[0][0] + vec[1] * rot_mat[0][1] + vec[2] * rot_mat[0][2];
 | |
|     const float y_tmp = vec[0] * rot_mat[1][0] + vec[1] * rot_mat[1][1] + vec[2] * rot_mat[1][2];
 | |
|     const float z_tmp = vec[0] * rot_mat[2][0] + vec[1] * rot_mat[2][1] + vec[2] * rot_mat[2][2];
 | |
| 
 | |
|     vec[0] = x_tmp;
 | |
|     vec[1] = y_tmp;
 | |
|     vec[2] = z_tmp;
 | |
| }
 | |
| 
 | |
| static inline void set_mirror_modifier(int h_flip, int v_flip, int d_flip,
 | |
|                                        float *modifier)
 | |
| {
 | |
|     modifier[0] = h_flip ? -1.f : 1.f;
 | |
|     modifier[1] = v_flip ? -1.f : 1.f;
 | |
|     modifier[2] = d_flip ? -1.f : 1.f;
 | |
| }
 | |
| 
 | |
| static inline void mirror(const float *modifier, float *vec)
 | |
| {
 | |
|     vec[0] *= modifier[0];
 | |
|     vec[1] *= modifier[1];
 | |
|     vec[2] *= modifier[2];
 | |
| }
 | |
| 
 | |
| static int allocate_plane(V360Context *s, int sizeof_uv, int sizeof_ker, int sizeof_mask, int p)
 | |
| {
 | |
|     if (!s->u[p])
 | |
|         s->u[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_uv);
 | |
|     if (!s->v[p])
 | |
|         s->v[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_uv);
 | |
|     if (!s->u[p] || !s->v[p])
 | |
|         return AVERROR(ENOMEM);
 | |
|     if (sizeof_ker) {
 | |
|         if (!s->ker[p])
 | |
|             s->ker[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_ker);
 | |
|         if (!s->ker[p])
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     if (sizeof_mask && !p) {
 | |
|         if (!s->mask)
 | |
|             s->mask = av_calloc(s->pr_width[p] * s->pr_height[p], sizeof_mask);
 | |
|         if (!s->mask)
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void fov_from_dfov(int format, float d_fov, float w, float h, float *h_fov, float *v_fov)
 | |
| {
 | |
|     switch (format) {
 | |
|     case ORTHOGRAPHIC:
 | |
|         {
 | |
|             const float d = 0.5f * hypotf(w, h);
 | |
|             const float l = sinf(d_fov * M_PI / 360.f) / d;
 | |
| 
 | |
|             *h_fov = asinf(w * 0.5 * l) * 360.f / M_PI;
 | |
|             *v_fov = asinf(h * 0.5 * l) * 360.f / M_PI;
 | |
| 
 | |
|             if (d_fov > 180.f) {
 | |
|                 *h_fov = 180.f - *h_fov;
 | |
|                 *v_fov = 180.f - *v_fov;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case EQUISOLID:
 | |
|         {
 | |
|             const float d = 0.5f * hypotf(w, h);
 | |
|             const float l = d / (sinf(d_fov * M_PI / 720.f));
 | |
| 
 | |
|             *h_fov = 2.f * asinf(w * 0.5f / l) * 360.f / M_PI;
 | |
|             *v_fov = 2.f * asinf(h * 0.5f / l) * 360.f / M_PI;
 | |
|         }
 | |
|         break;
 | |
|     case STEREOGRAPHIC:
 | |
|         {
 | |
|             const float d = 0.5f * hypotf(w, h);
 | |
|             const float l = d / (tanf(d_fov * M_PI / 720.f));
 | |
| 
 | |
|             *h_fov = 2.f * atan2f(w * 0.5f, l) * 360.f / M_PI;
 | |
|             *v_fov = 2.f * atan2f(h * 0.5f, l) * 360.f / M_PI;
 | |
|         }
 | |
|         break;
 | |
|     case DUAL_FISHEYE:
 | |
|         {
 | |
|             const float d = 0.5f * hypotf(w * 0.5f, h);
 | |
| 
 | |
|             *h_fov = d / w * 2.f * d_fov;
 | |
|             *v_fov = d / h * d_fov;
 | |
|         }
 | |
|         break;
 | |
|     case FISHEYE:
 | |
|         {
 | |
|             const float d = 0.5f * hypotf(w, h);
 | |
| 
 | |
|             *h_fov = d / w * d_fov;
 | |
|             *v_fov = d / h * d_fov;
 | |
|         }
 | |
|         break;
 | |
|     case FLAT:
 | |
|     default:
 | |
|         {
 | |
|             const float da = tanf(0.5f * FFMIN(d_fov, 359.f) * M_PI / 180.f);
 | |
|             const float d = hypotf(w, h);
 | |
| 
 | |
|             *h_fov = atan2f(da * w, d) * 360.f / M_PI;
 | |
|             *v_fov = atan2f(da * h, d) * 360.f / M_PI;
 | |
| 
 | |
|             if (*h_fov < 0.f)
 | |
|                 *h_fov += 360.f;
 | |
|             if (*v_fov < 0.f)
 | |
|                 *v_fov += 360.f;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void set_dimensions(int *outw, int *outh, int w, int h, const AVPixFmtDescriptor *desc)
 | |
| {
 | |
|     outw[1] = outw[2] = FF_CEIL_RSHIFT(w, desc->log2_chroma_w);
 | |
|     outw[0] = outw[3] = w;
 | |
|     outh[1] = outh[2] = FF_CEIL_RSHIFT(h, desc->log2_chroma_h);
 | |
|     outh[0] = outh[3] = h;
 | |
| }
 | |
| 
 | |
| // Calculate remap data
 | |
| static av_always_inline int v360_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     for (int p = 0; p < s->nb_allocated; p++) {
 | |
|         const int max_value = s->max_value;
 | |
|         const int width = s->pr_width[p];
 | |
|         const int uv_linesize = s->uv_linesize[p];
 | |
|         const int height = s->pr_height[p];
 | |
|         const int in_width = s->inplanewidth[p];
 | |
|         const int in_height = s->inplaneheight[p];
 | |
|         const int slice_start = (height *  jobnr     ) / nb_jobs;
 | |
|         const int slice_end   = (height * (jobnr + 1)) / nb_jobs;
 | |
|         float du, dv;
 | |
|         float vec[3];
 | |
|         XYRemap rmap;
 | |
| 
 | |
|         for (int j = slice_start; j < slice_end; j++) {
 | |
|             for (int i = 0; i < width; i++) {
 | |
|                 int16_t *u = s->u[p] + (j * uv_linesize + i) * s->elements;
 | |
|                 int16_t *v = s->v[p] + (j * uv_linesize + i) * s->elements;
 | |
|                 int16_t *ker = s->ker[p] + (j * uv_linesize + i) * s->elements;
 | |
|                 uint8_t *mask8 = p ? NULL : s->mask + (j * s->pr_width[0] + i);
 | |
|                 uint16_t *mask16 = p ? NULL : (uint16_t *)s->mask + (j * s->pr_width[0] + i);
 | |
|                 int in_mask, out_mask;
 | |
| 
 | |
|                 if (s->out_transpose)
 | |
|                     out_mask = s->out_transform(s, j, i, height, width, vec);
 | |
|                 else
 | |
|                     out_mask = s->out_transform(s, i, j, width, height, vec);
 | |
|                 av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2]));
 | |
|                 rotate(s->rot_mat, vec);
 | |
|                 av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2]));
 | |
|                 normalize_vector(vec);
 | |
|                 mirror(s->output_mirror_modifier, vec);
 | |
|                 if (s->in_transpose)
 | |
|                     in_mask = s->in_transform(s, vec, in_height, in_width, rmap.v, rmap.u, &du, &dv);
 | |
|                 else
 | |
|                     in_mask = s->in_transform(s, vec, in_width, in_height, rmap.u, rmap.v, &du, &dv);
 | |
|                 av_assert1(!isnan(du) && !isnan(dv));
 | |
|                 s->calculate_kernel(du, dv, &rmap, u, v, ker);
 | |
| 
 | |
|                 if (!p && s->mask) {
 | |
|                     if (s->mask_size == 1) {
 | |
|                         mask8[0] = 255 * (out_mask & in_mask);
 | |
|                     } else {
 | |
|                         mask16[0] = max_value * (out_mask & in_mask);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int config_output(AVFilterLink *outlink)
 | |
| {
 | |
|     AVFilterContext *ctx = outlink->src;
 | |
|     AVFilterLink *inlink = ctx->inputs[0];
 | |
|     V360Context *s = ctx->priv;
 | |
|     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
 | |
|     const int depth = desc->comp[0].depth;
 | |
|     const int sizeof_mask = s->mask_size = (depth + 7) >> 3;
 | |
|     int sizeof_uv;
 | |
|     int sizeof_ker;
 | |
|     int err;
 | |
|     int h, w;
 | |
|     int in_offset_h, in_offset_w;
 | |
|     int out_offset_h, out_offset_w;
 | |
|     float hf, wf;
 | |
|     int (*prepare_out)(AVFilterContext *ctx);
 | |
|     int have_alpha;
 | |
| 
 | |
|     s->max_value = (1 << depth) - 1;
 | |
|     s->input_mirror_modifier[0] = s->ih_flip ? -1.f : 1.f;
 | |
|     s->input_mirror_modifier[1] = s->iv_flip ? -1.f : 1.f;
 | |
| 
 | |
|     switch (s->interp) {
 | |
|     case NEAREST:
 | |
|         s->calculate_kernel = nearest_kernel;
 | |
|         s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice;
 | |
|         s->elements = 1;
 | |
|         sizeof_uv = sizeof(int16_t) * s->elements;
 | |
|         sizeof_ker = 0;
 | |
|         break;
 | |
|     case BILINEAR:
 | |
|         s->calculate_kernel = bilinear_kernel;
 | |
|         s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice;
 | |
|         s->elements = 2 * 2;
 | |
|         sizeof_uv = sizeof(int16_t) * s->elements;
 | |
|         sizeof_ker = sizeof(int16_t) * s->elements;
 | |
|         break;
 | |
|     case LAGRANGE9:
 | |
|         s->calculate_kernel = lagrange_kernel;
 | |
|         s->remap_slice = depth <= 8 ? remap3_8bit_slice : remap3_16bit_slice;
 | |
|         s->elements = 3 * 3;
 | |
|         sizeof_uv = sizeof(int16_t) * s->elements;
 | |
|         sizeof_ker = sizeof(int16_t) * s->elements;
 | |
|         break;
 | |
|     case BICUBIC:
 | |
|         s->calculate_kernel = bicubic_kernel;
 | |
|         s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
 | |
|         s->elements = 4 * 4;
 | |
|         sizeof_uv = sizeof(int16_t) * s->elements;
 | |
|         sizeof_ker = sizeof(int16_t) * s->elements;
 | |
|         break;
 | |
|     case LANCZOS:
 | |
|         s->calculate_kernel = lanczos_kernel;
 | |
|         s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
 | |
|         s->elements = 4 * 4;
 | |
|         sizeof_uv = sizeof(int16_t) * s->elements;
 | |
|         sizeof_ker = sizeof(int16_t) * s->elements;
 | |
|         break;
 | |
|     case SPLINE16:
 | |
|         s->calculate_kernel = spline16_kernel;
 | |
|         s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
 | |
|         s->elements = 4 * 4;
 | |
|         sizeof_uv = sizeof(int16_t) * s->elements;
 | |
|         sizeof_ker = sizeof(int16_t) * s->elements;
 | |
|         break;
 | |
|     case GAUSSIAN:
 | |
|         s->calculate_kernel = gaussian_kernel;
 | |
|         s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
 | |
|         s->elements = 4 * 4;
 | |
|         sizeof_uv = sizeof(int16_t) * s->elements;
 | |
|         sizeof_ker = sizeof(int16_t) * s->elements;
 | |
|         break;
 | |
|     default:
 | |
|         av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     ff_v360_init(s, depth);
 | |
| 
 | |
|     for (int order = 0; order < NB_RORDERS; order++) {
 | |
|         const char c = s->rorder[order];
 | |
|         int rorder;
 | |
| 
 | |
|         if (c == '\0') {
 | |
|             av_log(ctx, AV_LOG_WARNING,
 | |
|                    "Incomplete rorder option. Direction for all 3 rotation orders should be specified. Switching to default rorder.\n");
 | |
|             s->rotation_order[0] = YAW;
 | |
|             s->rotation_order[1] = PITCH;
 | |
|             s->rotation_order[2] = ROLL;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         rorder = get_rorder(c);
 | |
|         if (rorder == -1) {
 | |
|             av_log(ctx, AV_LOG_WARNING,
 | |
|                    "Incorrect rotation order symbol '%c' in rorder option. Switching to default rorder.\n", c);
 | |
|             s->rotation_order[0] = YAW;
 | |
|             s->rotation_order[1] = PITCH;
 | |
|             s->rotation_order[2] = ROLL;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         s->rotation_order[order] = rorder;
 | |
|     }
 | |
| 
 | |
|     switch (s->in_stereo) {
 | |
|     case STEREO_2D:
 | |
|         w = inlink->w;
 | |
|         h = inlink->h;
 | |
|         in_offset_w = in_offset_h = 0;
 | |
|         break;
 | |
|     case STEREO_SBS:
 | |
|         w = inlink->w / 2;
 | |
|         h = inlink->h;
 | |
|         in_offset_w = w;
 | |
|         in_offset_h = 0;
 | |
|         break;
 | |
|     case STEREO_TB:
 | |
|         w = inlink->w;
 | |
|         h = inlink->h / 2;
 | |
|         in_offset_w = 0;
 | |
|         in_offset_h = h;
 | |
|         break;
 | |
|     default:
 | |
|         av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     set_dimensions(s->inplanewidth, s->inplaneheight, w, h, desc);
 | |
|     set_dimensions(s->in_offset_w, s->in_offset_h, in_offset_w, in_offset_h, desc);
 | |
| 
 | |
|     s->in_width = s->inplanewidth[0];
 | |
|     s->in_height = s->inplaneheight[0];
 | |
| 
 | |
|     if (s->id_fov > 0.f)
 | |
|         fov_from_dfov(s->in, s->id_fov, w, h, &s->ih_fov, &s->iv_fov);
 | |
| 
 | |
|     if (s->in_transpose)
 | |
|         FFSWAP(int, s->in_width, s->in_height);
 | |
| 
 | |
|     switch (s->in) {
 | |
|     case EQUIRECTANGULAR:
 | |
|         s->in_transform = xyz_to_equirect;
 | |
|         err = 0;
 | |
|         wf = w;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case CUBEMAP_3_2:
 | |
|         s->in_transform = xyz_to_cube3x2;
 | |
|         err = prepare_cube_in(ctx);
 | |
|         wf = w / 3.f * 4.f;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case CUBEMAP_1_6:
 | |
|         s->in_transform = xyz_to_cube1x6;
 | |
|         err = prepare_cube_in(ctx);
 | |
|         wf = w * 4.f;
 | |
|         hf = h / 3.f;
 | |
|         break;
 | |
|     case CUBEMAP_6_1:
 | |
|         s->in_transform = xyz_to_cube6x1;
 | |
|         err = prepare_cube_in(ctx);
 | |
|         wf = w / 3.f * 2.f;
 | |
|         hf = h * 2.f;
 | |
|         break;
 | |
|     case EQUIANGULAR:
 | |
|         s->in_transform = xyz_to_eac;
 | |
|         err = prepare_eac_in(ctx);
 | |
|         wf = w;
 | |
|         hf = h / 9.f * 8.f;
 | |
|         break;
 | |
|     case FLAT:
 | |
|         s->in_transform = xyz_to_flat;
 | |
|         err = prepare_flat_in(ctx);
 | |
|         wf = w;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case PERSPECTIVE:
 | |
|         av_log(ctx, AV_LOG_ERROR, "Supplied format is not accepted as input.\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     case DUAL_FISHEYE:
 | |
|         s->in_transform = xyz_to_dfisheye;
 | |
|         err = prepare_fisheye_in(ctx);
 | |
|         wf = w;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case BARREL:
 | |
|         s->in_transform = xyz_to_barrel;
 | |
|         err = 0;
 | |
|         wf = w / 5.f * 4.f;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case STEREOGRAPHIC:
 | |
|         s->in_transform = xyz_to_stereographic;
 | |
|         err = prepare_stereographic_in(ctx);
 | |
|         wf = w;
 | |
|         hf = h / 2.f;
 | |
|         break;
 | |
|     case MERCATOR:
 | |
|         s->in_transform = xyz_to_mercator;
 | |
|         err = 0;
 | |
|         wf = w;
 | |
|         hf = h / 2.f;
 | |
|         break;
 | |
|     case BALL:
 | |
|         s->in_transform = xyz_to_ball;
 | |
|         err = 0;
 | |
|         wf = w;
 | |
|         hf = h / 2.f;
 | |
|         break;
 | |
|     case HAMMER:
 | |
|         s->in_transform = xyz_to_hammer;
 | |
|         err = 0;
 | |
|         wf = w;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case SINUSOIDAL:
 | |
|         s->in_transform = xyz_to_sinusoidal;
 | |
|         err = 0;
 | |
|         wf = w;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case FISHEYE:
 | |
|         s->in_transform = xyz_to_fisheye;
 | |
|         err = prepare_fisheye_in(ctx);
 | |
|         wf = w * 2;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case PANNINI:
 | |
|         s->in_transform = xyz_to_pannini;
 | |
|         err = 0;
 | |
|         wf = w;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case CYLINDRICAL:
 | |
|         s->in_transform = xyz_to_cylindrical;
 | |
|         err = prepare_cylindrical_in(ctx);
 | |
|         wf = w;
 | |
|         hf = h * 2.f;
 | |
|         break;
 | |
|     case TETRAHEDRON:
 | |
|         s->in_transform = xyz_to_tetrahedron;
 | |
|         err = 0;
 | |
|         wf = w;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case BARREL_SPLIT:
 | |
|         s->in_transform = xyz_to_barrelsplit;
 | |
|         err = 0;
 | |
|         wf = w * 4.f / 3.f;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case TSPYRAMID:
 | |
|         s->in_transform = xyz_to_tspyramid;
 | |
|         err = 0;
 | |
|         wf = w;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case HEQUIRECTANGULAR:
 | |
|         s->in_transform = xyz_to_hequirect;
 | |
|         err = 0;
 | |
|         wf = w * 2.f;
 | |
|         hf = h;
 | |
|         break;
 | |
|     case EQUISOLID:
 | |
|         s->in_transform = xyz_to_equisolid;
 | |
|         err = prepare_equisolid_in(ctx);
 | |
|         wf = w;
 | |
|         hf = h / 2.f;
 | |
|         break;
 | |
|     case ORTHOGRAPHIC:
 | |
|         s->in_transform = xyz_to_orthographic;
 | |
|         err = prepare_orthographic_in(ctx);
 | |
|         wf = w;
 | |
|         hf = h / 2.f;
 | |
|         break;
 | |
|     default:
 | |
|         av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n");
 | |
|         return AVERROR_BUG;
 | |
|     }
 | |
| 
 | |
|     if (err != 0) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     switch (s->out) {
 | |
|     case EQUIRECTANGULAR:
 | |
|         s->out_transform = equirect_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case CUBEMAP_3_2:
 | |
|         s->out_transform = cube3x2_to_xyz;
 | |
|         prepare_out = prepare_cube_out;
 | |
|         w = lrintf(wf / 4.f * 3.f);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case CUBEMAP_1_6:
 | |
|         s->out_transform = cube1x6_to_xyz;
 | |
|         prepare_out = prepare_cube_out;
 | |
|         w = lrintf(wf / 4.f);
 | |
|         h = lrintf(hf * 3.f);
 | |
|         break;
 | |
|     case CUBEMAP_6_1:
 | |
|         s->out_transform = cube6x1_to_xyz;
 | |
|         prepare_out = prepare_cube_out;
 | |
|         w = lrintf(wf / 2.f * 3.f);
 | |
|         h = lrintf(hf / 2.f);
 | |
|         break;
 | |
|     case EQUIANGULAR:
 | |
|         s->out_transform = eac_to_xyz;
 | |
|         prepare_out = prepare_eac_out;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf / 8.f * 9.f);
 | |
|         break;
 | |
|     case FLAT:
 | |
|         s->out_transform = flat_to_xyz;
 | |
|         prepare_out = prepare_flat_out;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case DUAL_FISHEYE:
 | |
|         s->out_transform = dfisheye_to_xyz;
 | |
|         prepare_out = prepare_fisheye_out;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case BARREL:
 | |
|         s->out_transform = barrel_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf / 4.f * 5.f);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case STEREOGRAPHIC:
 | |
|         s->out_transform = stereographic_to_xyz;
 | |
|         prepare_out = prepare_stereographic_out;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf * 2.f);
 | |
|         break;
 | |
|     case MERCATOR:
 | |
|         s->out_transform = mercator_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf * 2.f);
 | |
|         break;
 | |
|     case BALL:
 | |
|         s->out_transform = ball_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf * 2.f);
 | |
|         break;
 | |
|     case HAMMER:
 | |
|         s->out_transform = hammer_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case SINUSOIDAL:
 | |
|         s->out_transform = sinusoidal_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case FISHEYE:
 | |
|         s->out_transform = fisheye_to_xyz;
 | |
|         prepare_out = prepare_fisheye_out;
 | |
|         w = lrintf(wf * 0.5f);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case PANNINI:
 | |
|         s->out_transform = pannini_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case CYLINDRICAL:
 | |
|         s->out_transform = cylindrical_to_xyz;
 | |
|         prepare_out = prepare_cylindrical_out;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf * 0.5f);
 | |
|         break;
 | |
|     case PERSPECTIVE:
 | |
|         s->out_transform = perspective_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf / 2.f);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case TETRAHEDRON:
 | |
|         s->out_transform = tetrahedron_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case BARREL_SPLIT:
 | |
|         s->out_transform = barrelsplit_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf / 4.f * 3.f);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case TSPYRAMID:
 | |
|         s->out_transform = tspyramid_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case HEQUIRECTANGULAR:
 | |
|         s->out_transform = hequirect_to_xyz;
 | |
|         prepare_out = NULL;
 | |
|         w = lrintf(wf / 2.f);
 | |
|         h = lrintf(hf);
 | |
|         break;
 | |
|     case EQUISOLID:
 | |
|         s->out_transform = equisolid_to_xyz;
 | |
|         prepare_out = prepare_equisolid_out;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf * 2.f);
 | |
|         break;
 | |
|     case ORTHOGRAPHIC:
 | |
|         s->out_transform = orthographic_to_xyz;
 | |
|         prepare_out = prepare_orthographic_out;
 | |
|         w = lrintf(wf);
 | |
|         h = lrintf(hf * 2.f);
 | |
|         break;
 | |
|     default:
 | |
|         av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n");
 | |
|         return AVERROR_BUG;
 | |
|     }
 | |
| 
 | |
|     // Override resolution with user values if specified
 | |
|     if (s->width > 0 && s->height <= 0 && s->h_fov > 0.f && s->v_fov > 0.f &&
 | |
|         s->out == FLAT && s->d_fov == 0.f) {
 | |
|         w = s->width;
 | |
|         h = w / tanf(s->h_fov * M_PI / 360.f) * tanf(s->v_fov * M_PI / 360.f);
 | |
|     } else if (s->width <= 0 && s->height > 0 && s->h_fov > 0.f && s->v_fov > 0.f &&
 | |
|         s->out == FLAT && s->d_fov == 0.f) {
 | |
|         h = s->height;
 | |
|         w = h / tanf(s->v_fov * M_PI / 360.f) * tanf(s->h_fov * M_PI / 360.f);
 | |
|     } else if (s->width > 0 && s->height > 0) {
 | |
|         w = s->width;
 | |
|         h = s->height;
 | |
|     } else if (s->width > 0 || s->height > 0) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Both width and height values should be specified.\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     } else {
 | |
|         if (s->out_transpose)
 | |
|             FFSWAP(int, w, h);
 | |
| 
 | |
|         if (s->in_transpose)
 | |
|             FFSWAP(int, w, h);
 | |
|     }
 | |
| 
 | |
|     s->width  = w;
 | |
|     s->height = h;
 | |
| 
 | |
|     if (s->d_fov > 0.f)
 | |
|         fov_from_dfov(s->out, s->d_fov, w, h, &s->h_fov, &s->v_fov);
 | |
| 
 | |
|     if (prepare_out) {
 | |
|         err = prepare_out(ctx);
 | |
|         if (err != 0)
 | |
|             return err;
 | |
|     }
 | |
| 
 | |
|     set_dimensions(s->pr_width, s->pr_height, w, h, desc);
 | |
| 
 | |
|     switch (s->out_stereo) {
 | |
|     case STEREO_2D:
 | |
|         out_offset_w = out_offset_h = 0;
 | |
|         break;
 | |
|     case STEREO_SBS:
 | |
|         out_offset_w = w;
 | |
|         out_offset_h = 0;
 | |
|         w *= 2;
 | |
|         break;
 | |
|     case STEREO_TB:
 | |
|         out_offset_w = 0;
 | |
|         out_offset_h = h;
 | |
|         h *= 2;
 | |
|         break;
 | |
|     default:
 | |
|         av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     set_dimensions(s->out_offset_w, s->out_offset_h, out_offset_w, out_offset_h, desc);
 | |
|     set_dimensions(s->planewidth, s->planeheight, w, h, desc);
 | |
| 
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         s->uv_linesize[i] = FFALIGN(s->pr_width[i], 8);
 | |
| 
 | |
|     outlink->h = h;
 | |
|     outlink->w = w;
 | |
| 
 | |
|     s->nb_planes = av_pix_fmt_count_planes(inlink->format);
 | |
|     have_alpha   = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
 | |
| 
 | |
|     if (desc->log2_chroma_h == desc->log2_chroma_w && desc->log2_chroma_h == 0) {
 | |
|         s->nb_allocated = 1;
 | |
|         s->map[0] = s->map[1] = s->map[2] = s->map[3] = 0;
 | |
|     } else {
 | |
|         s->nb_allocated = 2;
 | |
|         s->map[0] = s->map[3] = 0;
 | |
|         s->map[1] = s->map[2] = 1;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < s->nb_allocated; i++) {
 | |
|         err = allocate_plane(s, sizeof_uv, sizeof_ker, sizeof_mask * have_alpha * s->alpha, i);
 | |
|         if (err < 0)
 | |
|             return err;
 | |
|     }
 | |
| 
 | |
|     calculate_rotation_matrix(s->yaw, s->pitch, s->roll, s->rot_mat, s->rotation_order);
 | |
|     set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, s->output_mirror_modifier);
 | |
| 
 | |
|     ctx->internal->execute(ctx, v360_slice, NULL, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     AVFilterLink *outlink = ctx->outputs[0];
 | |
|     V360Context *s = ctx->priv;
 | |
|     AVFrame *out;
 | |
|     ThreadData td;
 | |
| 
 | |
|     out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
 | |
|     if (!out) {
 | |
|         av_frame_free(&in);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
|     av_frame_copy_props(out, in);
 | |
| 
 | |
|     td.in = in;
 | |
|     td.out = out;
 | |
| 
 | |
|     ctx->internal->execute(ctx, s->remap_slice, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
 | |
| 
 | |
|     av_frame_free(&in);
 | |
|     return ff_filter_frame(outlink, out);
 | |
| }
 | |
| 
 | |
| static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
 | |
|                            char *res, int res_len, int flags)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     return config_output(ctx->outputs[0]);
 | |
| }
 | |
| 
 | |
| static av_cold void uninit(AVFilterContext *ctx)
 | |
| {
 | |
|     V360Context *s = ctx->priv;
 | |
| 
 | |
|     for (int p = 0; p < s->nb_allocated; p++) {
 | |
|         av_freep(&s->u[p]);
 | |
|         av_freep(&s->v[p]);
 | |
|         av_freep(&s->ker[p]);
 | |
|     }
 | |
|     av_freep(&s->mask);
 | |
| }
 | |
| 
 | |
| static const AVFilterPad inputs[] = {
 | |
|     {
 | |
|         .name         = "default",
 | |
|         .type         = AVMEDIA_TYPE_VIDEO,
 | |
|         .filter_frame = filter_frame,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| static const AVFilterPad outputs[] = {
 | |
|     {
 | |
|         .name         = "default",
 | |
|         .type         = AVMEDIA_TYPE_VIDEO,
 | |
|         .config_props = config_output,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFilter ff_vf_v360 = {
 | |
|     .name          = "v360",
 | |
|     .description   = NULL_IF_CONFIG_SMALL("Convert 360 projection of video."),
 | |
|     .priv_size     = sizeof(V360Context),
 | |
|     .uninit        = uninit,
 | |
|     .query_formats = query_formats,
 | |
|     .inputs        = inputs,
 | |
|     .outputs       = outputs,
 | |
|     .priv_class    = &v360_class,
 | |
|     .flags         = AVFILTER_FLAG_SLICE_THREADS,
 | |
|     .process_command = process_command,
 | |
| };
 | 
