mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-26 18:30:52 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			623 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			623 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * audio resampling
 | |
|  * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
 | |
|  * bessel function: Copyright (c) 2006 Xiaogang Zhang
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * audio resampling
 | |
|  * @author Michael Niedermayer <michaelni@gmx.at>
 | |
|  */
 | |
| 
 | |
| #include "libavutil/avassert.h"
 | |
| #include "resample.h"
 | |
| 
 | |
| static inline double eval_poly(const double *coeff, int size, double x) {
 | |
|     double sum = coeff[size-1];
 | |
|     int i;
 | |
|     for (i = size-2; i >= 0; --i) {
 | |
|         sum *= x;
 | |
|         sum += coeff[i];
 | |
|     }
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 0th order modified bessel function of the first kind.
 | |
|  * Algorithm taken from the Boost project, source:
 | |
|  * https://searchcode.com/codesearch/view/14918379/
 | |
|  * Use, modification and distribution are subject to the
 | |
|  * Boost Software License, Version 1.0 (see notice below).
 | |
|  * Boost Software License - Version 1.0 - August 17th, 2003
 | |
| Permission is hereby granted, free of charge, to any person or organization
 | |
| obtaining a copy of the software and accompanying documentation covered by
 | |
| this license (the "Software") to use, reproduce, display, distribute,
 | |
| execute, and transmit the Software, and to prepare derivative works of the
 | |
| Software, and to permit third-parties to whom the Software is furnished to
 | |
| do so, all subject to the following:
 | |
| 
 | |
| The copyright notices in the Software and this entire statement, including
 | |
| the above license grant, this restriction and the following disclaimer,
 | |
| must be included in all copies of the Software, in whole or in part, and
 | |
| all derivative works of the Software, unless such copies or derivative
 | |
| works are solely in the form of machine-executable object code generated by
 | |
| a source language processor.
 | |
| 
 | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
 | |
| SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
 | |
| FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
 | |
| ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 | |
| DEALINGS IN THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| static double bessel(double x) {
 | |
| // Modified Bessel function of the first kind of order zero
 | |
| // minimax rational approximations on intervals, see
 | |
| // Blair and Edwards, Chalk River Report AECL-4928, 1974
 | |
|     static const double p1[] = {
 | |
|         -2.2335582639474375249e+15,
 | |
|         -5.5050369673018427753e+14,
 | |
|         -3.2940087627407749166e+13,
 | |
|         -8.4925101247114157499e+11,
 | |
|         -1.1912746104985237192e+10,
 | |
|         -1.0313066708737980747e+08,
 | |
|         -5.9545626019847898221e+05,
 | |
|         -2.4125195876041896775e+03,
 | |
|         -7.0935347449210549190e+00,
 | |
|         -1.5453977791786851041e-02,
 | |
|         -2.5172644670688975051e-05,
 | |
|         -3.0517226450451067446e-08,
 | |
|         -2.6843448573468483278e-11,
 | |
|         -1.5982226675653184646e-14,
 | |
|         -5.2487866627945699800e-18,
 | |
|     };
 | |
|     static const double q1[] = {
 | |
|         -2.2335582639474375245e+15,
 | |
|          7.8858692566751002988e+12,
 | |
|         -1.2207067397808979846e+10,
 | |
|          1.0377081058062166144e+07,
 | |
|         -4.8527560179962773045e+03,
 | |
|          1.0,
 | |
|     };
 | |
|     static const double p2[] = {
 | |
|         -2.2210262233306573296e-04,
 | |
|          1.3067392038106924055e-02,
 | |
|         -4.4700805721174453923e-01,
 | |
|          5.5674518371240761397e+00,
 | |
|         -2.3517945679239481621e+01,
 | |
|          3.1611322818701131207e+01,
 | |
|         -9.6090021968656180000e+00,
 | |
|     };
 | |
|     static const double q2[] = {
 | |
|         -5.5194330231005480228e-04,
 | |
|          3.2547697594819615062e-02,
 | |
|         -1.1151759188741312645e+00,
 | |
|          1.3982595353892851542e+01,
 | |
|         -6.0228002066743340583e+01,
 | |
|          8.5539563258012929600e+01,
 | |
|         -3.1446690275135491500e+01,
 | |
|         1.0,
 | |
|     };
 | |
|     double y, r, factor;
 | |
|     if (x == 0)
 | |
|         return 1.0;
 | |
|     x = fabs(x);
 | |
|     if (x <= 15) {
 | |
|         y = x * x;
 | |
|         return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, FF_ARRAY_ELEMS(q1), y);
 | |
|     }
 | |
|     else {
 | |
|         y = 1 / x - 1.0 / 15;
 | |
|         r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, FF_ARRAY_ELEMS(q2), y);
 | |
|         factor = exp(x) / sqrt(x);
 | |
|         return factor * r;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * builds a polyphase filterbank.
 | |
|  * @param factor resampling factor
 | |
|  * @param scale wanted sum of coefficients for each filter
 | |
|  * @param filter_type  filter type
 | |
|  * @param kaiser_beta  kaiser window beta
 | |
|  * @return 0 on success, negative on error
 | |
|  */
 | |
| static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
 | |
|                         int filter_type, double kaiser_beta){
 | |
|     int ph, i;
 | |
|     int ph_nb = phase_count % 2 ? phase_count : phase_count / 2 + 1;
 | |
|     double x, y, w, t, s;
 | |
|     double *tab = av_malloc_array(tap_count+1,  sizeof(*tab));
 | |
|     double *sin_lut = av_malloc_array(ph_nb, sizeof(*sin_lut));
 | |
|     const int center= (tap_count-1)/2;
 | |
|     double norm = 0;
 | |
|     int ret = AVERROR(ENOMEM);
 | |
| 
 | |
|     if (!tab || !sin_lut)
 | |
|         goto fail;
 | |
| 
 | |
|     av_assert0(tap_count == 1 || tap_count % 2 == 0);
 | |
| 
 | |
|     /* if upsampling, only need to interpolate, no filter */
 | |
|     if (factor > 1.0)
 | |
|         factor = 1.0;
 | |
| 
 | |
|     if (factor == 1.0) {
 | |
|         for (ph = 0; ph < ph_nb; ph++)
 | |
|             sin_lut[ph] = sin(M_PI * ph / phase_count) * (center & 1 ? 1 : -1);
 | |
|     }
 | |
|     for(ph = 0; ph < ph_nb; ph++) {
 | |
|         s = sin_lut[ph];
 | |
|         for(i=0;i<tap_count;i++) {
 | |
|             x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
 | |
|             if (x == 0) y = 1.0;
 | |
|             else if (factor == 1.0)
 | |
|                 y = s / x;
 | |
|             else
 | |
|                 y = sin(x) / x;
 | |
|             switch(filter_type){
 | |
|             case SWR_FILTER_TYPE_CUBIC:{
 | |
|                 const float d= -0.5; //first order derivative = -0.5
 | |
|                 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
 | |
|                 if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
 | |
|                 else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
 | |
|                 break;}
 | |
|             case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
 | |
|                 w = 2.0*x / (factor*tap_count);
 | |
|                 t = -cos(w);
 | |
|                 y *= 0.3635819 - 0.4891775 * t + 0.1365995 * (2*t*t-1) - 0.0106411 * (4*t*t*t - 3*t);
 | |
|                 break;
 | |
|             case SWR_FILTER_TYPE_KAISER:
 | |
|                 w = 2.0*x / (factor*tap_count*M_PI);
 | |
|                 y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
 | |
|                 break;
 | |
|             default:
 | |
|                 av_assert0(0);
 | |
|             }
 | |
| 
 | |
|             tab[i] = y;
 | |
|             s = -s;
 | |
|             if (!ph)
 | |
|                 norm += y;
 | |
|         }
 | |
| 
 | |
|         /* normalize so that an uniform color remains the same */
 | |
|         switch(c->format){
 | |
|         case AV_SAMPLE_FMT_S16P:
 | |
|             for(i=0;i<tap_count;i++)
 | |
|                 ((int16_t*)filter)[ph * alloc + i] = av_clip_int16(lrintf(tab[i] * scale / norm));
 | |
|             if (phase_count % 2) break;
 | |
|             for (i = 0; i < tap_count; i++)
 | |
|                 ((int16_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int16_t*)filter)[ph * alloc + i];
 | |
|             break;
 | |
|         case AV_SAMPLE_FMT_S32P:
 | |
|             for(i=0;i<tap_count;i++)
 | |
|                 ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
 | |
|             if (phase_count % 2) break;
 | |
|             for (i = 0; i < tap_count; i++)
 | |
|                 ((int32_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int32_t*)filter)[ph * alloc + i];
 | |
|             break;
 | |
|         case AV_SAMPLE_FMT_FLTP:
 | |
|             for(i=0;i<tap_count;i++)
 | |
|                 ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
 | |
|             if (phase_count % 2) break;
 | |
|             for (i = 0; i < tap_count; i++)
 | |
|                 ((float*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((float*)filter)[ph * alloc + i];
 | |
|             break;
 | |
|         case AV_SAMPLE_FMT_DBLP:
 | |
|             for(i=0;i<tap_count;i++)
 | |
|                 ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
 | |
|             if (phase_count % 2) break;
 | |
|             for (i = 0; i < tap_count; i++)
 | |
|                 ((double*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((double*)filter)[ph * alloc + i];
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| #if 0
 | |
|     {
 | |
| #define LEN 1024
 | |
|         int j,k;
 | |
|         double sine[LEN + tap_count];
 | |
|         double filtered[LEN];
 | |
|         double maxff=-2, minff=2, maxsf=-2, minsf=2;
 | |
|         for(i=0; i<LEN; i++){
 | |
|             double ss=0, sf=0, ff=0;
 | |
|             for(j=0; j<LEN+tap_count; j++)
 | |
|                 sine[j]= cos(i*j*M_PI/LEN);
 | |
|             for(j=0; j<LEN; j++){
 | |
|                 double sum=0;
 | |
|                 ph=0;
 | |
|                 for(k=0; k<tap_count; k++)
 | |
|                     sum += filter[ph * tap_count + k] * sine[k+j];
 | |
|                 filtered[j]= sum / (1<<FILTER_SHIFT);
 | |
|                 ss+= sine[j + center] * sine[j + center];
 | |
|                 ff+= filtered[j] * filtered[j];
 | |
|                 sf+= sine[j + center] * filtered[j];
 | |
|             }
 | |
|             ss= sqrt(2*ss/LEN);
 | |
|             ff= sqrt(2*ff/LEN);
 | |
|             sf= 2*sf/LEN;
 | |
|             maxff= FFMAX(maxff, ff);
 | |
|             minff= FFMIN(minff, ff);
 | |
|             maxsf= FFMAX(maxsf, sf);
 | |
|             minsf= FFMIN(minsf, sf);
 | |
|             if(i%11==0){
 | |
|                 av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
 | |
|                 minff=minsf= 2;
 | |
|                 maxff=maxsf= -2;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     ret = 0;
 | |
| fail:
 | |
|     av_free(tab);
 | |
|     av_free(sin_lut);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void resample_free(ResampleContext **cc){
 | |
|     ResampleContext *c = *cc;
 | |
|     if(!c)
 | |
|         return;
 | |
|     av_freep(&c->filter_bank);
 | |
|     av_freep(cc);
 | |
| }
 | |
| 
 | |
| static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
 | |
|                                     double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta,
 | |
|                                     double precision, int cheby, int exact_rational)
 | |
| {
 | |
|     double cutoff = cutoff0? cutoff0 : 0.97;
 | |
|     double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
 | |
|     int phase_count= 1<<phase_shift;
 | |
|     int phase_count_compensation = phase_count;
 | |
|     int filter_length = FFMAX((int)ceil(filter_size/factor), 1);
 | |
| 
 | |
|     if (filter_length > 1)
 | |
|         filter_length = FFALIGN(filter_length, 2);
 | |
| 
 | |
|     if (exact_rational) {
 | |
|         int phase_count_exact, phase_count_exact_den;
 | |
| 
 | |
|         av_reduce(&phase_count_exact, &phase_count_exact_den, out_rate, in_rate, INT_MAX);
 | |
|         if (phase_count_exact <= phase_count) {
 | |
|             phase_count_compensation = phase_count_exact * (phase_count / phase_count_exact);
 | |
|             phase_count = phase_count_exact;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!c || c->phase_count != phase_count || c->linear!=linear || c->factor != factor
 | |
|            || c->filter_length != filter_length || c->format != format
 | |
|            || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
 | |
|         resample_free(&c);
 | |
|         c = av_mallocz(sizeof(*c));
 | |
|         if (!c)
 | |
|             return NULL;
 | |
| 
 | |
|         c->format= format;
 | |
| 
 | |
|         c->felem_size= av_get_bytes_per_sample(c->format);
 | |
| 
 | |
|         switch(c->format){
 | |
|         case AV_SAMPLE_FMT_S16P:
 | |
|             c->filter_shift = 15;
 | |
|             break;
 | |
|         case AV_SAMPLE_FMT_S32P:
 | |
|             c->filter_shift = 30;
 | |
|             break;
 | |
|         case AV_SAMPLE_FMT_FLTP:
 | |
|         case AV_SAMPLE_FMT_DBLP:
 | |
|             c->filter_shift = 0;
 | |
|             break;
 | |
|         default:
 | |
|             av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
 | |
|             av_assert0(0);
 | |
|         }
 | |
| 
 | |
|         if (filter_size/factor > INT32_MAX/256) {
 | |
|             av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
 | |
|             goto error;
 | |
|         }
 | |
| 
 | |
|         c->phase_count   = phase_count;
 | |
|         c->linear        = linear;
 | |
|         c->factor        = factor;
 | |
|         c->filter_length = filter_length;
 | |
|         c->filter_alloc  = FFALIGN(c->filter_length, 8);
 | |
|         c->filter_bank   = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
 | |
|         c->filter_type   = filter_type;
 | |
|         c->kaiser_beta   = kaiser_beta;
 | |
|         c->phase_count_compensation = phase_count_compensation;
 | |
|         if (!c->filter_bank)
 | |
|             goto error;
 | |
|         if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
 | |
|             goto error;
 | |
|         memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
 | |
|         memcpy(c->filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
 | |
|     }
 | |
| 
 | |
|     c->compensation_distance= 0;
 | |
|     if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
 | |
|         goto error;
 | |
|     while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
 | |
|         c->dst_incr *= 2;
 | |
|         c->src_incr *= 2;
 | |
|     }
 | |
|     c->ideal_dst_incr = c->dst_incr;
 | |
|     c->dst_incr_div   = c->dst_incr / c->src_incr;
 | |
|     c->dst_incr_mod   = c->dst_incr % c->src_incr;
 | |
| 
 | |
|     c->index= -phase_count*((c->filter_length-1)/2);
 | |
|     c->frac= 0;
 | |
| 
 | |
|     swri_resample_dsp_init(c);
 | |
| 
 | |
|     return c;
 | |
| error:
 | |
|     av_freep(&c->filter_bank);
 | |
|     av_free(c);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static int rebuild_filter_bank_with_compensation(ResampleContext *c)
 | |
| {
 | |
|     uint8_t *new_filter_bank;
 | |
|     int new_src_incr, new_dst_incr;
 | |
|     int phase_count = c->phase_count_compensation;
 | |
|     int ret;
 | |
| 
 | |
|     if (phase_count == c->phase_count)
 | |
|         return 0;
 | |
| 
 | |
|     av_assert0(!c->frac && !c->dst_incr_mod);
 | |
| 
 | |
|     new_filter_bank = av_calloc(c->filter_alloc, (phase_count + 1) * c->felem_size);
 | |
|     if (!new_filter_bank)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     ret = build_filter(c, new_filter_bank, c->factor, c->filter_length, c->filter_alloc,
 | |
|                        phase_count, 1 << c->filter_shift, c->filter_type, c->kaiser_beta);
 | |
|     if (ret < 0) {
 | |
|         av_freep(&new_filter_bank);
 | |
|         return ret;
 | |
|     }
 | |
|     memcpy(new_filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, new_filter_bank, (c->filter_alloc-1)*c->felem_size);
 | |
|     memcpy(new_filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, new_filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
 | |
| 
 | |
|     if (!av_reduce(&new_src_incr, &new_dst_incr, c->src_incr,
 | |
|                    c->dst_incr * (int64_t)(phase_count/c->phase_count), INT32_MAX/2))
 | |
|     {
 | |
|         av_freep(&new_filter_bank);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     c->src_incr = new_src_incr;
 | |
|     c->dst_incr = new_dst_incr;
 | |
|     while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
 | |
|         c->dst_incr *= 2;
 | |
|         c->src_incr *= 2;
 | |
|     }
 | |
|     c->ideal_dst_incr = c->dst_incr;
 | |
|     c->dst_incr_div   = c->dst_incr / c->src_incr;
 | |
|     c->dst_incr_mod   = c->dst_incr % c->src_incr;
 | |
|     c->index         *= phase_count / c->phase_count;
 | |
|     c->phase_count    = phase_count;
 | |
|     av_freep(&c->filter_bank);
 | |
|     c->filter_bank = new_filter_bank;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
 | |
|     int ret;
 | |
| 
 | |
|     if (compensation_distance && sample_delta) {
 | |
|         ret = rebuild_filter_bank_with_compensation(c);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     c->compensation_distance= compensation_distance;
 | |
|     if (compensation_distance)
 | |
|         c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
 | |
|     else
 | |
|         c->dst_incr = c->ideal_dst_incr;
 | |
| 
 | |
|     c->dst_incr_div   = c->dst_incr / c->src_incr;
 | |
|     c->dst_incr_mod   = c->dst_incr % c->src_incr;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
 | |
|     int i;
 | |
|     int av_unused mm_flags = av_get_cpu_flags();
 | |
|     int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
 | |
|                     (mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
 | |
|     int64_t max_src_size = (INT64_MAX/2 / c->phase_count) / c->src_incr;
 | |
| 
 | |
|     if (c->compensation_distance)
 | |
|         dst_size = FFMIN(dst_size, c->compensation_distance);
 | |
|     src_size = FFMIN(src_size, max_src_size);
 | |
| 
 | |
|     *consumed = 0;
 | |
| 
 | |
|     if (c->filter_length == 1 && c->phase_count == 1) {
 | |
|         int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*c->index;
 | |
|         int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
 | |
|         int new_size = (src_size * (int64_t)c->src_incr - c->frac + c->dst_incr - 1) / c->dst_incr;
 | |
| 
 | |
|         dst_size = FFMAX(FFMIN(dst_size, new_size), 0);
 | |
|         if (dst_size > 0) {
 | |
|             for (i = 0; i < dst->ch_count; i++) {
 | |
|                 c->dsp.resample_one(dst->ch[i], src->ch[i], dst_size, index2, incr);
 | |
|                 if (i+1 == dst->ch_count) {
 | |
|                     c->index += dst_size * c->dst_incr_div;
 | |
|                     c->index += (c->frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
 | |
|                     av_assert2(c->index >= 0);
 | |
|                     *consumed = c->index;
 | |
|                     c->frac   = (c->frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
 | |
|                     c->index = 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         int64_t end_index = (1LL + src_size - c->filter_length) * c->phase_count;
 | |
|         int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
 | |
|         int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
 | |
|         int (*resample_func)(struct ResampleContext *c, void *dst,
 | |
|                              const void *src, int n, int update_ctx);
 | |
| 
 | |
|         dst_size = FFMAX(FFMIN(dst_size, delta_n), 0);
 | |
|         if (dst_size > 0) {
 | |
|             /* resample_linear and resample_common should have same behavior
 | |
|              * when frac and dst_incr_mod are zero */
 | |
|             resample_func = (c->linear && (c->frac || c->dst_incr_mod)) ?
 | |
|                             c->dsp.resample_linear : c->dsp.resample_common;
 | |
|             for (i = 0; i < dst->ch_count; i++)
 | |
|                 *consumed = resample_func(c, dst->ch[i], src->ch[i], dst_size, i+1 == dst->ch_count);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(need_emms)
 | |
|         emms_c();
 | |
| 
 | |
|     if (c->compensation_distance) {
 | |
|         c->compensation_distance -= dst_size;
 | |
|         if (!c->compensation_distance) {
 | |
|             c->dst_incr     = c->ideal_dst_incr;
 | |
|             c->dst_incr_div = c->dst_incr / c->src_incr;
 | |
|             c->dst_incr_mod = c->dst_incr % c->src_incr;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return dst_size;
 | |
| }
 | |
| 
 | |
| static int64_t get_delay(struct SwrContext *s, int64_t base){
 | |
|     ResampleContext *c = s->resample;
 | |
|     int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
 | |
|     num *= c->phase_count;
 | |
|     num -= c->index;
 | |
|     num *= c->src_incr;
 | |
|     num -= c->frac;
 | |
|     return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr * c->phase_count);
 | |
| }
 | |
| 
 | |
| static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
 | |
|     ResampleContext *c = s->resample;
 | |
|     // The + 2 are added to allow implementations to be slightly inaccurate, they should not be needed currently.
 | |
|     // They also make it easier to proof that changes and optimizations do not
 | |
|     // break the upper bound.
 | |
|     int64_t num = s->in_buffer_count + 2LL + in_samples;
 | |
|     num *= c->phase_count;
 | |
|     num -= c->index;
 | |
|     num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) * c->phase_count, AV_ROUND_UP) + 2;
 | |
| 
 | |
|     if (c->compensation_distance) {
 | |
|         if (num > INT_MAX)
 | |
|             return AVERROR(EINVAL);
 | |
| 
 | |
|         num = FFMAX(num, (num * c->ideal_dst_incr - 1) / c->dst_incr + 1);
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static int resample_flush(struct SwrContext *s) {
 | |
|     ResampleContext *c = s->resample;
 | |
|     AudioData *a= &s->in_buffer;
 | |
|     int i, j, ret;
 | |
|     int reflection = (FFMIN(s->in_buffer_count, c->filter_length) + 1) / 2;
 | |
| 
 | |
|     if((ret = swri_realloc_audio(a, s->in_buffer_index + s->in_buffer_count + reflection)) < 0)
 | |
|         return ret;
 | |
|     av_assert0(a->planar);
 | |
|     for(i=0; i<a->ch_count; i++){
 | |
|         for(j=0; j<reflection; j++){
 | |
|             memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j  )*a->bps,
 | |
|                 a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
 | |
|         }
 | |
|     }
 | |
|     s->in_buffer_count += reflection;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // in fact the whole handle multiple ridiculously small buffers might need more thinking...
 | |
| static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
 | |
|                                  int in_count, int *out_idx, int *out_sz)
 | |
| {
 | |
|     int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;
 | |
| 
 | |
|     if (c->index >= 0)
 | |
|         return 0;
 | |
| 
 | |
|     if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
 | |
|         return res;
 | |
| 
 | |
|     // copy
 | |
|     for (n = *out_sz; n < num; n++) {
 | |
|         for (ch = 0; ch < src->ch_count; ch++) {
 | |
|             memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
 | |
|                    src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // if not enough data is in, return and wait for more
 | |
|     if (num < c->filter_length + 1) {
 | |
|         *out_sz = num;
 | |
|         *out_idx = c->filter_length;
 | |
|         return INT_MAX;
 | |
|     }
 | |
| 
 | |
|     // else invert
 | |
|     for (n = 1; n <= c->filter_length; n++) {
 | |
|         for (ch = 0; ch < src->ch_count; ch++) {
 | |
|             memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
 | |
|                    dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
 | |
|                    c->felem_size);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     res = num - *out_sz;
 | |
|     *out_idx = c->filter_length;
 | |
|     while (c->index < 0) {
 | |
|         --*out_idx;
 | |
|         c->index += c->phase_count;
 | |
|     }
 | |
|     *out_sz = FFMAX(*out_sz + c->filter_length,
 | |
|                     1 + c->filter_length * 2) - *out_idx;
 | |
| 
 | |
|     return FFMAX(res, 0);
 | |
| }
 | |
| 
 | |
| struct Resampler const swri_resampler={
 | |
|   resample_init,
 | |
|   resample_free,
 | |
|   multiple_resample,
 | |
|   resample_flush,
 | |
|   set_compensation,
 | |
|   get_delay,
 | |
|   invert_initial_buffer,
 | |
|   get_out_samples,
 | |
| };
 | 
