mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 04:26:37 +08:00 
			
		
		
		
	 0aa095483d
			
		
	
	0aa095483d
	
	
	
		
			
			* commit '6fee1b90ce3bf4fbdfde7016e0890057c9000487': avcodec: Add av_cold attributes to init functions missing them Conflicts: libavcodec/aacpsy.c libavcodec/atrac3.c libavcodec/dvdsubdec.c libavcodec/ffv1.c libavcodec/ffv1enc.c libavcodec/h261enc.c libavcodec/h264_parser.c libavcodec/h264dsp.c libavcodec/h264pred.c libavcodec/libschroedingerenc.c libavcodec/libxvid_rc.c libavcodec/mpeg12.c libavcodec/mpeg12enc.c libavcodec/proresdsp.c libavcodec/rangecoder.c libavcodec/videodsp.c libavcodec/x86/proresdsp_init.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			2079 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2079 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * MPEG Audio decoder
 | |
|  * Copyright (c) 2001, 2002 Fabrice Bellard
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * MPEG Audio decoder
 | |
|  */
 | |
| 
 | |
| #include "libavutil/attributes.h"
 | |
| #include "libavutil/avassert.h"
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/float_dsp.h"
 | |
| #include "libavutil/libm.h"
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "internal.h"
 | |
| #include "mathops.h"
 | |
| #include "mpegaudiodsp.h"
 | |
| 
 | |
| /*
 | |
|  * TODO:
 | |
|  *  - test lsf / mpeg25 extensively.
 | |
|  */
 | |
| 
 | |
| #include "mpegaudio.h"
 | |
| #include "mpegaudiodecheader.h"
 | |
| 
 | |
| #define BACKSTEP_SIZE 512
 | |
| #define EXTRABYTES 24
 | |
| #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
 | |
| 
 | |
| /* layer 3 "granule" */
 | |
| typedef struct GranuleDef {
 | |
|     uint8_t scfsi;
 | |
|     int part2_3_length;
 | |
|     int big_values;
 | |
|     int global_gain;
 | |
|     int scalefac_compress;
 | |
|     uint8_t block_type;
 | |
|     uint8_t switch_point;
 | |
|     int table_select[3];
 | |
|     int subblock_gain[3];
 | |
|     uint8_t scalefac_scale;
 | |
|     uint8_t count1table_select;
 | |
|     int region_size[3]; /* number of huffman codes in each region */
 | |
|     int preflag;
 | |
|     int short_start, long_end; /* long/short band indexes */
 | |
|     uint8_t scale_factors[40];
 | |
|     DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
 | |
| } GranuleDef;
 | |
| 
 | |
| typedef struct MPADecodeContext {
 | |
|     MPA_DECODE_HEADER
 | |
|     uint8_t last_buf[LAST_BUF_SIZE];
 | |
|     int last_buf_size;
 | |
|     /* next header (used in free format parsing) */
 | |
|     uint32_t free_format_next_header;
 | |
|     GetBitContext gb;
 | |
|     GetBitContext in_gb;
 | |
|     DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
 | |
|     int synth_buf_offset[MPA_MAX_CHANNELS];
 | |
|     DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
 | |
|     INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
 | |
|     GranuleDef granules[2][2]; /* Used in Layer 3 */
 | |
|     int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
 | |
|     int dither_state;
 | |
|     int err_recognition;
 | |
|     AVCodecContext* avctx;
 | |
|     MPADSPContext mpadsp;
 | |
|     AVFloatDSPContext fdsp;
 | |
|     AVFrame *frame;
 | |
| } MPADecodeContext;
 | |
| 
 | |
| #if CONFIG_FLOAT
 | |
| #   define SHR(a,b)       ((a)*(1.0f/(1<<(b))))
 | |
| #   define FIXR_OLD(a)    ((int)((a) * FRAC_ONE + 0.5))
 | |
| #   define FIXR(x)        ((float)(x))
 | |
| #   define FIXHR(x)       ((float)(x))
 | |
| #   define MULH3(x, y, s) ((s)*(y)*(x))
 | |
| #   define MULLx(x, y, s) ((y)*(x))
 | |
| #   define RENAME(a) a ## _float
 | |
| #   define OUT_FMT   AV_SAMPLE_FMT_FLT
 | |
| #   define OUT_FMT_P AV_SAMPLE_FMT_FLTP
 | |
| #else
 | |
| #   define SHR(a,b)       ((a)>>(b))
 | |
| /* WARNING: only correct for positive numbers */
 | |
| #   define FIXR_OLD(a)    ((int)((a) * FRAC_ONE + 0.5))
 | |
| #   define FIXR(a)        ((int)((a) * FRAC_ONE + 0.5))
 | |
| #   define FIXHR(a)       ((int)((a) * (1LL<<32) + 0.5))
 | |
| #   define MULH3(x, y, s) MULH((s)*(x), y)
 | |
| #   define MULLx(x, y, s) MULL(x,y,s)
 | |
| #   define RENAME(a)      a ## _fixed
 | |
| #   define OUT_FMT   AV_SAMPLE_FMT_S16
 | |
| #   define OUT_FMT_P AV_SAMPLE_FMT_S16P
 | |
| #endif
 | |
| 
 | |
| /****************/
 | |
| 
 | |
| #define HEADER_SIZE 4
 | |
| 
 | |
| #include "mpegaudiodata.h"
 | |
| #include "mpegaudiodectab.h"
 | |
| 
 | |
| /* vlc structure for decoding layer 3 huffman tables */
 | |
| static VLC huff_vlc[16];
 | |
| static VLC_TYPE huff_vlc_tables[
 | |
|     0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
 | |
|   142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
 | |
|   ][2];
 | |
| static const int huff_vlc_tables_sizes[16] = {
 | |
|     0,  128,  128,  128,  130,  128,  154,  166,
 | |
|   142,  204,  190,  170,  542,  460,  662,  414
 | |
| };
 | |
| static VLC huff_quad_vlc[2];
 | |
| static VLC_TYPE  huff_quad_vlc_tables[128+16][2];
 | |
| static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
 | |
| /* computed from band_size_long */
 | |
| static uint16_t band_index_long[9][23];
 | |
| #include "mpegaudio_tablegen.h"
 | |
| /* intensity stereo coef table */
 | |
| static INTFLOAT is_table[2][16];
 | |
| static INTFLOAT is_table_lsf[2][2][16];
 | |
| static INTFLOAT csa_table[8][4];
 | |
| 
 | |
| static int16_t division_tab3[1<<6 ];
 | |
| static int16_t division_tab5[1<<8 ];
 | |
| static int16_t division_tab9[1<<11];
 | |
| 
 | |
| static int16_t * const division_tabs[4] = {
 | |
|     division_tab3, division_tab5, NULL, division_tab9
 | |
| };
 | |
| 
 | |
| /* lower 2 bits: modulo 3, higher bits: shift */
 | |
| static uint16_t scale_factor_modshift[64];
 | |
| /* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
 | |
| static int32_t scale_factor_mult[15][3];
 | |
| /* mult table for layer 2 group quantization */
 | |
| 
 | |
| #define SCALE_GEN(v) \
 | |
| { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
 | |
| 
 | |
| static const int32_t scale_factor_mult2[3][3] = {
 | |
|     SCALE_GEN(4.0 / 3.0), /* 3 steps */
 | |
|     SCALE_GEN(4.0 / 5.0), /* 5 steps */
 | |
|     SCALE_GEN(4.0 / 9.0), /* 9 steps */
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Convert region offsets to region sizes and truncate
 | |
|  * size to big_values.
 | |
|  */
 | |
| static void region_offset2size(GranuleDef *g)
 | |
| {
 | |
|     int i, k, j = 0;
 | |
|     g->region_size[2] = 576 / 2;
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         k = FFMIN(g->region_size[i], g->big_values);
 | |
|         g->region_size[i] = k - j;
 | |
|         j = k;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void init_short_region(MPADecodeContext *s, GranuleDef *g)
 | |
| {
 | |
|     if (g->block_type == 2) {
 | |
|         if (s->sample_rate_index != 8)
 | |
|             g->region_size[0] = (36 / 2);
 | |
|         else
 | |
|             g->region_size[0] = (72 / 2);
 | |
|     } else {
 | |
|         if (s->sample_rate_index <= 2)
 | |
|             g->region_size[0] = (36 / 2);
 | |
|         else if (s->sample_rate_index != 8)
 | |
|             g->region_size[0] = (54 / 2);
 | |
|         else
 | |
|             g->region_size[0] = (108 / 2);
 | |
|     }
 | |
|     g->region_size[1] = (576 / 2);
 | |
| }
 | |
| 
 | |
| static void init_long_region(MPADecodeContext *s, GranuleDef *g,
 | |
|                              int ra1, int ra2)
 | |
| {
 | |
|     int l;
 | |
|     g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
 | |
|     /* should not overflow */
 | |
|     l = FFMIN(ra1 + ra2 + 2, 22);
 | |
|     g->region_size[1] = band_index_long[s->sample_rate_index][      l] >> 1;
 | |
| }
 | |
| 
 | |
| static void compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
 | |
| {
 | |
|     if (g->block_type == 2) {
 | |
|         if (g->switch_point) {
 | |
|             if(s->sample_rate_index == 8)
 | |
|                 avpriv_request_sample(s->avctx, "switch point in 8khz");
 | |
|             /* if switched mode, we handle the 36 first samples as
 | |
|                 long blocks.  For 8000Hz, we handle the 72 first
 | |
|                 exponents as long blocks */
 | |
|             if (s->sample_rate_index <= 2)
 | |
|                 g->long_end = 8;
 | |
|             else
 | |
|                 g->long_end = 6;
 | |
| 
 | |
|             g->short_start = 3;
 | |
|         } else {
 | |
|             g->long_end    = 0;
 | |
|             g->short_start = 0;
 | |
|         }
 | |
|     } else {
 | |
|         g->short_start = 13;
 | |
|         g->long_end    = 22;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* layer 1 unscaling */
 | |
| /* n = number of bits of the mantissa minus 1 */
 | |
| static inline int l1_unscale(int n, int mant, int scale_factor)
 | |
| {
 | |
|     int shift, mod;
 | |
|     int64_t val;
 | |
| 
 | |
|     shift   = scale_factor_modshift[scale_factor];
 | |
|     mod     = shift & 3;
 | |
|     shift >>= 2;
 | |
|     val     = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
 | |
|     shift  += n;
 | |
|     /* NOTE: at this point, 1 <= shift >= 21 + 15 */
 | |
|     return (int)((val + (1LL << (shift - 1))) >> shift);
 | |
| }
 | |
| 
 | |
| static inline int l2_unscale_group(int steps, int mant, int scale_factor)
 | |
| {
 | |
|     int shift, mod, val;
 | |
| 
 | |
|     shift   = scale_factor_modshift[scale_factor];
 | |
|     mod     = shift & 3;
 | |
|     shift >>= 2;
 | |
| 
 | |
|     val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
 | |
|     /* NOTE: at this point, 0 <= shift <= 21 */
 | |
|     if (shift > 0)
 | |
|         val = (val + (1 << (shift - 1))) >> shift;
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
 | |
| static inline int l3_unscale(int value, int exponent)
 | |
| {
 | |
|     unsigned int m;
 | |
|     int e;
 | |
| 
 | |
|     e  = table_4_3_exp  [4 * value + (exponent & 3)];
 | |
|     m  = table_4_3_value[4 * value + (exponent & 3)];
 | |
|     e -= exponent >> 2;
 | |
| #ifdef DEBUG
 | |
|     if(e < 1)
 | |
|         av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
 | |
| #endif
 | |
|     if (e > 31)
 | |
|         return 0;
 | |
|     m = (m + (1 << (e - 1))) >> e;
 | |
| 
 | |
|     return m;
 | |
| }
 | |
| 
 | |
| static av_cold void decode_init_static(void)
 | |
| {
 | |
|     int i, j, k;
 | |
|     int offset;
 | |
| 
 | |
|     /* scale factors table for layer 1/2 */
 | |
|     for (i = 0; i < 64; i++) {
 | |
|         int shift, mod;
 | |
|         /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
 | |
|         shift = i / 3;
 | |
|         mod   = i % 3;
 | |
|         scale_factor_modshift[i] = mod | (shift << 2);
 | |
|     }
 | |
| 
 | |
|     /* scale factor multiply for layer 1 */
 | |
|     for (i = 0; i < 15; i++) {
 | |
|         int n, norm;
 | |
|         n = i + 2;
 | |
|         norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
 | |
|         scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0          * 2.0), FRAC_BITS);
 | |
|         scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
 | |
|         scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
 | |
|         av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
 | |
|                 scale_factor_mult[i][0],
 | |
|                 scale_factor_mult[i][1],
 | |
|                 scale_factor_mult[i][2]);
 | |
|     }
 | |
| 
 | |
|     RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
 | |
| 
 | |
|     /* huffman decode tables */
 | |
|     offset = 0;
 | |
|     for (i = 1; i < 16; i++) {
 | |
|         const HuffTable *h = &mpa_huff_tables[i];
 | |
|         int xsize, x, y;
 | |
|         uint8_t  tmp_bits [512] = { 0 };
 | |
|         uint16_t tmp_codes[512] = { 0 };
 | |
| 
 | |
|         xsize = h->xsize;
 | |
| 
 | |
|         j = 0;
 | |
|         for (x = 0; x < xsize; x++) {
 | |
|             for (y = 0; y < xsize; y++) {
 | |
|                 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j  ];
 | |
|                 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* XXX: fail test */
 | |
|         huff_vlc[i].table = huff_vlc_tables+offset;
 | |
|         huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
 | |
|         init_vlc(&huff_vlc[i], 7, 512,
 | |
|                  tmp_bits, 1, 1, tmp_codes, 2, 2,
 | |
|                  INIT_VLC_USE_NEW_STATIC);
 | |
|         offset += huff_vlc_tables_sizes[i];
 | |
|     }
 | |
|     av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
 | |
| 
 | |
|     offset = 0;
 | |
|     for (i = 0; i < 2; i++) {
 | |
|         huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
 | |
|         huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
 | |
|         init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
 | |
|                  mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
 | |
|                  INIT_VLC_USE_NEW_STATIC);
 | |
|         offset += huff_quad_vlc_tables_sizes[i];
 | |
|     }
 | |
|     av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
 | |
| 
 | |
|     for (i = 0; i < 9; i++) {
 | |
|         k = 0;
 | |
|         for (j = 0; j < 22; j++) {
 | |
|             band_index_long[i][j] = k;
 | |
|             k += band_size_long[i][j];
 | |
|         }
 | |
|         band_index_long[i][22] = k;
 | |
|     }
 | |
| 
 | |
|     /* compute n ^ (4/3) and store it in mantissa/exp format */
 | |
| 
 | |
|     mpegaudio_tableinit();
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         if (ff_mpa_quant_bits[i] < 0) {
 | |
|             for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
 | |
|                 int val1, val2, val3, steps;
 | |
|                 int val = j;
 | |
|                 steps   = ff_mpa_quant_steps[i];
 | |
|                 val1    = val % steps;
 | |
|                 val    /= steps;
 | |
|                 val2    = val % steps;
 | |
|                 val3    = val / steps;
 | |
|                 division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     for (i = 0; i < 7; i++) {
 | |
|         float f;
 | |
|         INTFLOAT v;
 | |
|         if (i != 6) {
 | |
|             f = tan((double)i * M_PI / 12.0);
 | |
|             v = FIXR(f / (1.0 + f));
 | |
|         } else {
 | |
|             v = FIXR(1.0);
 | |
|         }
 | |
|         is_table[0][    i] = v;
 | |
|         is_table[1][6 - i] = v;
 | |
|     }
 | |
|     /* invalid values */
 | |
|     for (i = 7; i < 16; i++)
 | |
|         is_table[0][i] = is_table[1][i] = 0.0;
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         double f;
 | |
|         int e, k;
 | |
| 
 | |
|         for (j = 0; j < 2; j++) {
 | |
|             e = -(j + 1) * ((i + 1) >> 1);
 | |
|             f = exp2(e / 4.0);
 | |
|             k = i & 1;
 | |
|             is_table_lsf[j][k ^ 1][i] = FIXR(f);
 | |
|             is_table_lsf[j][k    ][i] = FIXR(1.0);
 | |
|             av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
 | |
|                     i, j, (float) is_table_lsf[j][0][i],
 | |
|                     (float) is_table_lsf[j][1][i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         float ci, cs, ca;
 | |
|         ci = ci_table[i];
 | |
|         cs = 1.0 / sqrt(1.0 + ci * ci);
 | |
|         ca = cs * ci;
 | |
| #if !CONFIG_FLOAT
 | |
|         csa_table[i][0] = FIXHR(cs/4);
 | |
|         csa_table[i][1] = FIXHR(ca/4);
 | |
|         csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
 | |
|         csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
 | |
| #else
 | |
|         csa_table[i][0] = cs;
 | |
|         csa_table[i][1] = ca;
 | |
|         csa_table[i][2] = ca + cs;
 | |
|         csa_table[i][3] = ca - cs;
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_cold int decode_init(AVCodecContext * avctx)
 | |
| {
 | |
|     static int initialized_tables = 0;
 | |
|     MPADecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     if (!initialized_tables) {
 | |
|         decode_init_static();
 | |
|         initialized_tables = 1;
 | |
|     }
 | |
| 
 | |
|     s->avctx = avctx;
 | |
| 
 | |
|     avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
 | |
|     ff_mpadsp_init(&s->mpadsp);
 | |
| 
 | |
|     if (avctx->request_sample_fmt == OUT_FMT &&
 | |
|         avctx->codec_id != AV_CODEC_ID_MP3ON4)
 | |
|         avctx->sample_fmt = OUT_FMT;
 | |
|     else
 | |
|         avctx->sample_fmt = OUT_FMT_P;
 | |
|     s->err_recognition = avctx->err_recognition;
 | |
| 
 | |
|     if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
 | |
|         s->adu_mode = 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define C3 FIXHR(0.86602540378443864676/2)
 | |
| #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
 | |
| #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
 | |
| #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
 | |
| 
 | |
| /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
 | |
|    cases. */
 | |
| static void imdct12(INTFLOAT *out, INTFLOAT *in)
 | |
| {
 | |
|     INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
 | |
| 
 | |
|     in0  = in[0*3];
 | |
|     in1  = in[1*3] + in[0*3];
 | |
|     in2  = in[2*3] + in[1*3];
 | |
|     in3  = in[3*3] + in[2*3];
 | |
|     in4  = in[4*3] + in[3*3];
 | |
|     in5  = in[5*3] + in[4*3];
 | |
|     in5 += in3;
 | |
|     in3 += in1;
 | |
| 
 | |
|     in2  = MULH3(in2, C3, 2);
 | |
|     in3  = MULH3(in3, C3, 4);
 | |
| 
 | |
|     t1   = in0 - in4;
 | |
|     t2   = MULH3(in1 - in5, C4, 2);
 | |
| 
 | |
|     out[ 7] =
 | |
|     out[10] = t1 + t2;
 | |
|     out[ 1] =
 | |
|     out[ 4] = t1 - t2;
 | |
| 
 | |
|     in0    += SHR(in4, 1);
 | |
|     in4     = in0 + in2;
 | |
|     in5    += 2*in1;
 | |
|     in1     = MULH3(in5 + in3, C5, 1);
 | |
|     out[ 8] =
 | |
|     out[ 9] = in4 + in1;
 | |
|     out[ 2] =
 | |
|     out[ 3] = in4 - in1;
 | |
| 
 | |
|     in0    -= in2;
 | |
|     in5     = MULH3(in5 - in3, C6, 2);
 | |
|     out[ 0] =
 | |
|     out[ 5] = in0 - in5;
 | |
|     out[ 6] =
 | |
|     out[11] = in0 + in5;
 | |
| }
 | |
| 
 | |
| /* return the number of decoded frames */
 | |
| static int mp_decode_layer1(MPADecodeContext *s)
 | |
| {
 | |
|     int bound, i, v, n, ch, j, mant;
 | |
|     uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
 | |
|     uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
 | |
| 
 | |
|     if (s->mode == MPA_JSTEREO)
 | |
|         bound = (s->mode_ext + 1) * 4;
 | |
|     else
 | |
|         bound = SBLIMIT;
 | |
| 
 | |
|     /* allocation bits */
 | |
|     for (i = 0; i < bound; i++) {
 | |
|         for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|             allocation[ch][i] = get_bits(&s->gb, 4);
 | |
|         }
 | |
|     }
 | |
|     for (i = bound; i < SBLIMIT; i++)
 | |
|         allocation[0][i] = get_bits(&s->gb, 4);
 | |
| 
 | |
|     /* scale factors */
 | |
|     for (i = 0; i < bound; i++) {
 | |
|         for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|             if (allocation[ch][i])
 | |
|                 scale_factors[ch][i] = get_bits(&s->gb, 6);
 | |
|         }
 | |
|     }
 | |
|     for (i = bound; i < SBLIMIT; i++) {
 | |
|         if (allocation[0][i]) {
 | |
|             scale_factors[0][i] = get_bits(&s->gb, 6);
 | |
|             scale_factors[1][i] = get_bits(&s->gb, 6);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* compute samples */
 | |
|     for (j = 0; j < 12; j++) {
 | |
|         for (i = 0; i < bound; i++) {
 | |
|             for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|                 n = allocation[ch][i];
 | |
|                 if (n) {
 | |
|                     mant = get_bits(&s->gb, n + 1);
 | |
|                     v = l1_unscale(n, mant, scale_factors[ch][i]);
 | |
|                 } else {
 | |
|                     v = 0;
 | |
|                 }
 | |
|                 s->sb_samples[ch][j][i] = v;
 | |
|             }
 | |
|         }
 | |
|         for (i = bound; i < SBLIMIT; i++) {
 | |
|             n = allocation[0][i];
 | |
|             if (n) {
 | |
|                 mant = get_bits(&s->gb, n + 1);
 | |
|                 v = l1_unscale(n, mant, scale_factors[0][i]);
 | |
|                 s->sb_samples[0][j][i] = v;
 | |
|                 v = l1_unscale(n, mant, scale_factors[1][i]);
 | |
|                 s->sb_samples[1][j][i] = v;
 | |
|             } else {
 | |
|                 s->sb_samples[0][j][i] = 0;
 | |
|                 s->sb_samples[1][j][i] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 12;
 | |
| }
 | |
| 
 | |
| static int mp_decode_layer2(MPADecodeContext *s)
 | |
| {
 | |
|     int sblimit; /* number of used subbands */
 | |
|     const unsigned char *alloc_table;
 | |
|     int table, bit_alloc_bits, i, j, ch, bound, v;
 | |
|     unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
 | |
|     unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
 | |
|     unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
 | |
|     int scale, qindex, bits, steps, k, l, m, b;
 | |
| 
 | |
|     /* select decoding table */
 | |
|     table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
 | |
|                                    s->sample_rate, s->lsf);
 | |
|     sblimit     = ff_mpa_sblimit_table[table];
 | |
|     alloc_table = ff_mpa_alloc_tables[table];
 | |
| 
 | |
|     if (s->mode == MPA_JSTEREO)
 | |
|         bound = (s->mode_ext + 1) * 4;
 | |
|     else
 | |
|         bound = sblimit;
 | |
| 
 | |
|     av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
 | |
| 
 | |
|     /* sanity check */
 | |
|     if (bound > sblimit)
 | |
|         bound = sblimit;
 | |
| 
 | |
|     /* parse bit allocation */
 | |
|     j = 0;
 | |
|     for (i = 0; i < bound; i++) {
 | |
|         bit_alloc_bits = alloc_table[j];
 | |
|         for (ch = 0; ch < s->nb_channels; ch++)
 | |
|             bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
 | |
|         j += 1 << bit_alloc_bits;
 | |
|     }
 | |
|     for (i = bound; i < sblimit; i++) {
 | |
|         bit_alloc_bits = alloc_table[j];
 | |
|         v = get_bits(&s->gb, bit_alloc_bits);
 | |
|         bit_alloc[0][i] = v;
 | |
|         bit_alloc[1][i] = v;
 | |
|         j += 1 << bit_alloc_bits;
 | |
|     }
 | |
| 
 | |
|     /* scale codes */
 | |
|     for (i = 0; i < sblimit; i++) {
 | |
|         for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|             if (bit_alloc[ch][i])
 | |
|                 scale_code[ch][i] = get_bits(&s->gb, 2);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* scale factors */
 | |
|     for (i = 0; i < sblimit; i++) {
 | |
|         for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|             if (bit_alloc[ch][i]) {
 | |
|                 sf = scale_factors[ch][i];
 | |
|                 switch (scale_code[ch][i]) {
 | |
|                 default:
 | |
|                 case 0:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = get_bits(&s->gb, 6);
 | |
|                     sf[2] = get_bits(&s->gb, 6);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = sf[0];
 | |
|                     sf[2] = sf[0];
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[2] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = sf[0];
 | |
|                     break;
 | |
|                 case 3:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[2] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = sf[2];
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* samples */
 | |
|     for (k = 0; k < 3; k++) {
 | |
|         for (l = 0; l < 12; l += 3) {
 | |
|             j = 0;
 | |
|             for (i = 0; i < bound; i++) {
 | |
|                 bit_alloc_bits = alloc_table[j];
 | |
|                 for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|                     b = bit_alloc[ch][i];
 | |
|                     if (b) {
 | |
|                         scale = scale_factors[ch][i][k];
 | |
|                         qindex = alloc_table[j+b];
 | |
|                         bits = ff_mpa_quant_bits[qindex];
 | |
|                         if (bits < 0) {
 | |
|                             int v2;
 | |
|                             /* 3 values at the same time */
 | |
|                             v = get_bits(&s->gb, -bits);
 | |
|                             v2 = division_tabs[qindex][v];
 | |
|                             steps  = ff_mpa_quant_steps[qindex];
 | |
| 
 | |
|                             s->sb_samples[ch][k * 12 + l + 0][i] =
 | |
|                                 l2_unscale_group(steps,  v2       & 15, scale);
 | |
|                             s->sb_samples[ch][k * 12 + l + 1][i] =
 | |
|                                 l2_unscale_group(steps, (v2 >> 4) & 15, scale);
 | |
|                             s->sb_samples[ch][k * 12 + l + 2][i] =
 | |
|                                 l2_unscale_group(steps,  v2 >> 8      , scale);
 | |
|                         } else {
 | |
|                             for (m = 0; m < 3; m++) {
 | |
|                                 v = get_bits(&s->gb, bits);
 | |
|                                 v = l1_unscale(bits - 1, v, scale);
 | |
|                                 s->sb_samples[ch][k * 12 + l + m][i] = v;
 | |
|                             }
 | |
|                         }
 | |
|                     } else {
 | |
|                         s->sb_samples[ch][k * 12 + l + 0][i] = 0;
 | |
|                         s->sb_samples[ch][k * 12 + l + 1][i] = 0;
 | |
|                         s->sb_samples[ch][k * 12 + l + 2][i] = 0;
 | |
|                     }
 | |
|                 }
 | |
|                 /* next subband in alloc table */
 | |
|                 j += 1 << bit_alloc_bits;
 | |
|             }
 | |
|             /* XXX: find a way to avoid this duplication of code */
 | |
|             for (i = bound; i < sblimit; i++) {
 | |
|                 bit_alloc_bits = alloc_table[j];
 | |
|                 b = bit_alloc[0][i];
 | |
|                 if (b) {
 | |
|                     int mant, scale0, scale1;
 | |
|                     scale0 = scale_factors[0][i][k];
 | |
|                     scale1 = scale_factors[1][i][k];
 | |
|                     qindex = alloc_table[j+b];
 | |
|                     bits = ff_mpa_quant_bits[qindex];
 | |
|                     if (bits < 0) {
 | |
|                         /* 3 values at the same time */
 | |
|                         v = get_bits(&s->gb, -bits);
 | |
|                         steps = ff_mpa_quant_steps[qindex];
 | |
|                         mant = v % steps;
 | |
|                         v = v / steps;
 | |
|                         s->sb_samples[0][k * 12 + l + 0][i] =
 | |
|                             l2_unscale_group(steps, mant, scale0);
 | |
|                         s->sb_samples[1][k * 12 + l + 0][i] =
 | |
|                             l2_unscale_group(steps, mant, scale1);
 | |
|                         mant = v % steps;
 | |
|                         v = v / steps;
 | |
|                         s->sb_samples[0][k * 12 + l + 1][i] =
 | |
|                             l2_unscale_group(steps, mant, scale0);
 | |
|                         s->sb_samples[1][k * 12 + l + 1][i] =
 | |
|                             l2_unscale_group(steps, mant, scale1);
 | |
|                         s->sb_samples[0][k * 12 + l + 2][i] =
 | |
|                             l2_unscale_group(steps, v, scale0);
 | |
|                         s->sb_samples[1][k * 12 + l + 2][i] =
 | |
|                             l2_unscale_group(steps, v, scale1);
 | |
|                     } else {
 | |
|                         for (m = 0; m < 3; m++) {
 | |
|                             mant = get_bits(&s->gb, bits);
 | |
|                             s->sb_samples[0][k * 12 + l + m][i] =
 | |
|                                 l1_unscale(bits - 1, mant, scale0);
 | |
|                             s->sb_samples[1][k * 12 + l + m][i] =
 | |
|                                 l1_unscale(bits - 1, mant, scale1);
 | |
|                         }
 | |
|                     }
 | |
|                 } else {
 | |
|                     s->sb_samples[0][k * 12 + l + 0][i] = 0;
 | |
|                     s->sb_samples[0][k * 12 + l + 1][i] = 0;
 | |
|                     s->sb_samples[0][k * 12 + l + 2][i] = 0;
 | |
|                     s->sb_samples[1][k * 12 + l + 0][i] = 0;
 | |
|                     s->sb_samples[1][k * 12 + l + 1][i] = 0;
 | |
|                     s->sb_samples[1][k * 12 + l + 2][i] = 0;
 | |
|                 }
 | |
|                 /* next subband in alloc table */
 | |
|                 j += 1 << bit_alloc_bits;
 | |
|             }
 | |
|             /* fill remaining samples to zero */
 | |
|             for (i = sblimit; i < SBLIMIT; i++) {
 | |
|                 for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|                     s->sb_samples[ch][k * 12 + l + 0][i] = 0;
 | |
|                     s->sb_samples[ch][k * 12 + l + 1][i] = 0;
 | |
|                     s->sb_samples[ch][k * 12 + l + 2][i] = 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 3 * 12;
 | |
| }
 | |
| 
 | |
| #define SPLIT(dst,sf,n)             \
 | |
|     if (n == 3) {                   \
 | |
|         int m = (sf * 171) >> 9;    \
 | |
|         dst   = sf - 3 * m;         \
 | |
|         sf    = m;                  \
 | |
|     } else if (n == 4) {            \
 | |
|         dst  = sf & 3;              \
 | |
|         sf >>= 2;                   \
 | |
|     } else if (n == 5) {            \
 | |
|         int m = (sf * 205) >> 10;   \
 | |
|         dst   = sf - 5 * m;         \
 | |
|         sf    = m;                  \
 | |
|     } else if (n == 6) {            \
 | |
|         int m = (sf * 171) >> 10;   \
 | |
|         dst   = sf - 6 * m;         \
 | |
|         sf    = m;                  \
 | |
|     } else {                        \
 | |
|         dst = 0;                    \
 | |
|     }
 | |
| 
 | |
| static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
 | |
|                                            int n3)
 | |
| {
 | |
|     SPLIT(slen[3], sf, n3)
 | |
|     SPLIT(slen[2], sf, n2)
 | |
|     SPLIT(slen[1], sf, n1)
 | |
|     slen[0] = sf;
 | |
| }
 | |
| 
 | |
| static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
 | |
|                                          int16_t *exponents)
 | |
| {
 | |
|     const uint8_t *bstab, *pretab;
 | |
|     int len, i, j, k, l, v0, shift, gain, gains[3];
 | |
|     int16_t *exp_ptr;
 | |
| 
 | |
|     exp_ptr = exponents;
 | |
|     gain    = g->global_gain - 210;
 | |
|     shift   = g->scalefac_scale + 1;
 | |
| 
 | |
|     bstab  = band_size_long[s->sample_rate_index];
 | |
|     pretab = mpa_pretab[g->preflag];
 | |
|     for (i = 0; i < g->long_end; i++) {
 | |
|         v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
 | |
|         len = bstab[i];
 | |
|         for (j = len; j > 0; j--)
 | |
|             *exp_ptr++ = v0;
 | |
|     }
 | |
| 
 | |
|     if (g->short_start < 13) {
 | |
|         bstab    = band_size_short[s->sample_rate_index];
 | |
|         gains[0] = gain - (g->subblock_gain[0] << 3);
 | |
|         gains[1] = gain - (g->subblock_gain[1] << 3);
 | |
|         gains[2] = gain - (g->subblock_gain[2] << 3);
 | |
|         k        = g->long_end;
 | |
|         for (i = g->short_start; i < 13; i++) {
 | |
|             len = bstab[i];
 | |
|             for (l = 0; l < 3; l++) {
 | |
|                 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
 | |
|                 for (j = len; j > 0; j--)
 | |
|                     *exp_ptr++ = v0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* handle n = 0 too */
 | |
| static inline int get_bitsz(GetBitContext *s, int n)
 | |
| {
 | |
|     return n ? get_bits(s, n) : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
 | |
|                           int *end_pos2)
 | |
| {
 | |
|     if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
 | |
|         s->gb           = s->in_gb;
 | |
|         s->in_gb.buffer = NULL;
 | |
|         av_assert2((get_bits_count(&s->gb) & 7) == 0);
 | |
|         skip_bits_long(&s->gb, *pos - *end_pos);
 | |
|         *end_pos2 =
 | |
|         *end_pos  = *end_pos2 + get_bits_count(&s->gb) - *pos;
 | |
|         *pos      = get_bits_count(&s->gb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Following is a optimized code for
 | |
|             INTFLOAT v = *src
 | |
|             if(get_bits1(&s->gb))
 | |
|                 v = -v;
 | |
|             *dst = v;
 | |
| */
 | |
| #if CONFIG_FLOAT
 | |
| #define READ_FLIP_SIGN(dst,src)                     \
 | |
|     v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31);  \
 | |
|     AV_WN32A(dst, v);
 | |
| #else
 | |
| #define READ_FLIP_SIGN(dst,src)     \
 | |
|     v      = -get_bits1(&s->gb);    \
 | |
|     *(dst) = (*(src) ^ v) - v;
 | |
| #endif
 | |
| 
 | |
| static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
 | |
|                           int16_t *exponents, int end_pos2)
 | |
| {
 | |
|     int s_index;
 | |
|     int i;
 | |
|     int last_pos, bits_left;
 | |
|     VLC *vlc;
 | |
|     int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
 | |
| 
 | |
|     /* low frequencies (called big values) */
 | |
|     s_index = 0;
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         int j, k, l, linbits;
 | |
|         j = g->region_size[i];
 | |
|         if (j == 0)
 | |
|             continue;
 | |
|         /* select vlc table */
 | |
|         k       = g->table_select[i];
 | |
|         l       = mpa_huff_data[k][0];
 | |
|         linbits = mpa_huff_data[k][1];
 | |
|         vlc     = &huff_vlc[l];
 | |
| 
 | |
|         if (!l) {
 | |
|             memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
 | |
|             s_index += 2 * j;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* read huffcode and compute each couple */
 | |
|         for (; j > 0; j--) {
 | |
|             int exponent, x, y;
 | |
|             int v;
 | |
|             int pos = get_bits_count(&s->gb);
 | |
| 
 | |
|             if (pos >= end_pos){
 | |
|                 switch_buffer(s, &pos, &end_pos, &end_pos2);
 | |
|                 if (pos >= end_pos)
 | |
|                     break;
 | |
|             }
 | |
|             y = get_vlc2(&s->gb, vlc->table, 7, 3);
 | |
| 
 | |
|             if (!y) {
 | |
|                 g->sb_hybrid[s_index  ] =
 | |
|                 g->sb_hybrid[s_index+1] = 0;
 | |
|                 s_index += 2;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             exponent= exponents[s_index];
 | |
| 
 | |
|             av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
 | |
|                     i, g->region_size[i] - j, x, y, exponent);
 | |
|             if (y & 16) {
 | |
|                 x = y >> 5;
 | |
|                 y = y & 0x0f;
 | |
|                 if (x < 15) {
 | |
|                     READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
 | |
|                 } else {
 | |
|                     x += get_bitsz(&s->gb, linbits);
 | |
|                     v  = l3_unscale(x, exponent);
 | |
|                     if (get_bits1(&s->gb))
 | |
|                         v = -v;
 | |
|                     g->sb_hybrid[s_index] = v;
 | |
|                 }
 | |
|                 if (y < 15) {
 | |
|                     READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
 | |
|                 } else {
 | |
|                     y += get_bitsz(&s->gb, linbits);
 | |
|                     v  = l3_unscale(y, exponent);
 | |
|                     if (get_bits1(&s->gb))
 | |
|                         v = -v;
 | |
|                     g->sb_hybrid[s_index+1] = v;
 | |
|                 }
 | |
|             } else {
 | |
|                 x = y >> 5;
 | |
|                 y = y & 0x0f;
 | |
|                 x += y;
 | |
|                 if (x < 15) {
 | |
|                     READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
 | |
|                 } else {
 | |
|                     x += get_bitsz(&s->gb, linbits);
 | |
|                     v  = l3_unscale(x, exponent);
 | |
|                     if (get_bits1(&s->gb))
 | |
|                         v = -v;
 | |
|                     g->sb_hybrid[s_index+!!y] = v;
 | |
|                 }
 | |
|                 g->sb_hybrid[s_index + !y] = 0;
 | |
|             }
 | |
|             s_index += 2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* high frequencies */
 | |
|     vlc = &huff_quad_vlc[g->count1table_select];
 | |
|     last_pos = 0;
 | |
|     while (s_index <= 572) {
 | |
|         int pos, code;
 | |
|         pos = get_bits_count(&s->gb);
 | |
|         if (pos >= end_pos) {
 | |
|             if (pos > end_pos2 && last_pos) {
 | |
|                 /* some encoders generate an incorrect size for this
 | |
|                    part. We must go back into the data */
 | |
|                 s_index -= 4;
 | |
|                 skip_bits_long(&s->gb, last_pos - pos);
 | |
|                 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
 | |
|                 if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
 | |
|                     s_index=0;
 | |
|                 break;
 | |
|             }
 | |
|             switch_buffer(s, &pos, &end_pos, &end_pos2);
 | |
|             if (pos >= end_pos)
 | |
|                 break;
 | |
|         }
 | |
|         last_pos = pos;
 | |
| 
 | |
|         code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
 | |
|         av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
 | |
|         g->sb_hybrid[s_index+0] =
 | |
|         g->sb_hybrid[s_index+1] =
 | |
|         g->sb_hybrid[s_index+2] =
 | |
|         g->sb_hybrid[s_index+3] = 0;
 | |
|         while (code) {
 | |
|             static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
 | |
|             int v;
 | |
|             int pos = s_index + idxtab[code];
 | |
|             code   ^= 8 >> idxtab[code];
 | |
|             READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
 | |
|         }
 | |
|         s_index += 4;
 | |
|     }
 | |
|     /* skip extension bits */
 | |
|     bits_left = end_pos2 - get_bits_count(&s->gb);
 | |
|     if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
 | |
|         s_index=0;
 | |
|     } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
 | |
|         s_index = 0;
 | |
|     }
 | |
|     memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
 | |
|     skip_bits_long(&s->gb, bits_left);
 | |
| 
 | |
|     i = get_bits_count(&s->gb);
 | |
|     switch_buffer(s, &i, &end_pos, &end_pos2);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Reorder short blocks from bitstream order to interleaved order. It
 | |
|    would be faster to do it in parsing, but the code would be far more
 | |
|    complicated */
 | |
| static void reorder_block(MPADecodeContext *s, GranuleDef *g)
 | |
| {
 | |
|     int i, j, len;
 | |
|     INTFLOAT *ptr, *dst, *ptr1;
 | |
|     INTFLOAT tmp[576];
 | |
| 
 | |
|     if (g->block_type != 2)
 | |
|         return;
 | |
| 
 | |
|     if (g->switch_point) {
 | |
|         if (s->sample_rate_index != 8)
 | |
|             ptr = g->sb_hybrid + 36;
 | |
|         else
 | |
|             ptr = g->sb_hybrid + 72;
 | |
|     } else {
 | |
|         ptr = g->sb_hybrid;
 | |
|     }
 | |
| 
 | |
|     for (i = g->short_start; i < 13; i++) {
 | |
|         len  = band_size_short[s->sample_rate_index][i];
 | |
|         ptr1 = ptr;
 | |
|         dst  = tmp;
 | |
|         for (j = len; j > 0; j--) {
 | |
|             *dst++ = ptr[0*len];
 | |
|             *dst++ = ptr[1*len];
 | |
|             *dst++ = ptr[2*len];
 | |
|             ptr++;
 | |
|         }
 | |
|         ptr += 2 * len;
 | |
|         memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define ISQRT2 FIXR(0.70710678118654752440)
 | |
| 
 | |
| static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
 | |
| {
 | |
|     int i, j, k, l;
 | |
|     int sf_max, sf, len, non_zero_found;
 | |
|     INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
 | |
|     int non_zero_found_short[3];
 | |
| 
 | |
|     /* intensity stereo */
 | |
|     if (s->mode_ext & MODE_EXT_I_STEREO) {
 | |
|         if (!s->lsf) {
 | |
|             is_tab = is_table;
 | |
|             sf_max = 7;
 | |
|         } else {
 | |
|             is_tab = is_table_lsf[g1->scalefac_compress & 1];
 | |
|             sf_max = 16;
 | |
|         }
 | |
| 
 | |
|         tab0 = g0->sb_hybrid + 576;
 | |
|         tab1 = g1->sb_hybrid + 576;
 | |
| 
 | |
|         non_zero_found_short[0] = 0;
 | |
|         non_zero_found_short[1] = 0;
 | |
|         non_zero_found_short[2] = 0;
 | |
|         k = (13 - g1->short_start) * 3 + g1->long_end - 3;
 | |
|         for (i = 12; i >= g1->short_start; i--) {
 | |
|             /* for last band, use previous scale factor */
 | |
|             if (i != 11)
 | |
|                 k -= 3;
 | |
|             len = band_size_short[s->sample_rate_index][i];
 | |
|             for (l = 2; l >= 0; l--) {
 | |
|                 tab0 -= len;
 | |
|                 tab1 -= len;
 | |
|                 if (!non_zero_found_short[l]) {
 | |
|                     /* test if non zero band. if so, stop doing i-stereo */
 | |
|                     for (j = 0; j < len; j++) {
 | |
|                         if (tab1[j] != 0) {
 | |
|                             non_zero_found_short[l] = 1;
 | |
|                             goto found1;
 | |
|                         }
 | |
|                     }
 | |
|                     sf = g1->scale_factors[k + l];
 | |
|                     if (sf >= sf_max)
 | |
|                         goto found1;
 | |
| 
 | |
|                     v1 = is_tab[0][sf];
 | |
|                     v2 = is_tab[1][sf];
 | |
|                     for (j = 0; j < len; j++) {
 | |
|                         tmp0    = tab0[j];
 | |
|                         tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
 | |
|                         tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
 | |
|                     }
 | |
|                 } else {
 | |
| found1:
 | |
|                     if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | |
|                         /* lower part of the spectrum : do ms stereo
 | |
|                            if enabled */
 | |
|                         for (j = 0; j < len; j++) {
 | |
|                             tmp0    = tab0[j];
 | |
|                             tmp1    = tab1[j];
 | |
|                             tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
 | |
|                             tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         non_zero_found = non_zero_found_short[0] |
 | |
|                          non_zero_found_short[1] |
 | |
|                          non_zero_found_short[2];
 | |
| 
 | |
|         for (i = g1->long_end - 1;i >= 0;i--) {
 | |
|             len   = band_size_long[s->sample_rate_index][i];
 | |
|             tab0 -= len;
 | |
|             tab1 -= len;
 | |
|             /* test if non zero band. if so, stop doing i-stereo */
 | |
|             if (!non_zero_found) {
 | |
|                 for (j = 0; j < len; j++) {
 | |
|                     if (tab1[j] != 0) {
 | |
|                         non_zero_found = 1;
 | |
|                         goto found2;
 | |
|                     }
 | |
|                 }
 | |
|                 /* for last band, use previous scale factor */
 | |
|                 k  = (i == 21) ? 20 : i;
 | |
|                 sf = g1->scale_factors[k];
 | |
|                 if (sf >= sf_max)
 | |
|                     goto found2;
 | |
|                 v1 = is_tab[0][sf];
 | |
|                 v2 = is_tab[1][sf];
 | |
|                 for (j = 0; j < len; j++) {
 | |
|                     tmp0    = tab0[j];
 | |
|                     tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
 | |
|                     tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
 | |
|                 }
 | |
|             } else {
 | |
| found2:
 | |
|                 if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | |
|                     /* lower part of the spectrum : do ms stereo
 | |
|                        if enabled */
 | |
|                     for (j = 0; j < len; j++) {
 | |
|                         tmp0    = tab0[j];
 | |
|                         tmp1    = tab1[j];
 | |
|                         tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
 | |
|                         tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | |
|         /* ms stereo ONLY */
 | |
|         /* NOTE: the 1/sqrt(2) normalization factor is included in the
 | |
|            global gain */
 | |
| #if CONFIG_FLOAT
 | |
|        s->fdsp.butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
 | |
| #else
 | |
|         tab0 = g0->sb_hybrid;
 | |
|         tab1 = g1->sb_hybrid;
 | |
|         for (i = 0; i < 576; i++) {
 | |
|             tmp0    = tab0[i];
 | |
|             tmp1    = tab1[i];
 | |
|             tab0[i] = tmp0 + tmp1;
 | |
|             tab1[i] = tmp0 - tmp1;
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if CONFIG_FLOAT
 | |
| #if HAVE_MIPSFPU
 | |
| #   include "mips/compute_antialias_float.h"
 | |
| #endif /* HAVE_MIPSFPU */
 | |
| #else
 | |
| #if HAVE_MIPSDSPR1
 | |
| #   include "mips/compute_antialias_fixed.h"
 | |
| #endif /* HAVE_MIPSDSPR1 */
 | |
| #endif /* CONFIG_FLOAT */
 | |
| 
 | |
| #ifndef compute_antialias
 | |
| #if CONFIG_FLOAT
 | |
| #define AA(j) do {                                                      \
 | |
|         float tmp0 = ptr[-1-j];                                         \
 | |
|         float tmp1 = ptr[   j];                                         \
 | |
|         ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1];    \
 | |
|         ptr[   j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0];    \
 | |
|     } while (0)
 | |
| #else
 | |
| #define AA(j) do {                                              \
 | |
|         int tmp0 = ptr[-1-j];                                   \
 | |
|         int tmp1 = ptr[   j];                                   \
 | |
|         int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]);          \
 | |
|         ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2]));   \
 | |
|         ptr[   j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3]));   \
 | |
|     } while (0)
 | |
| #endif
 | |
| 
 | |
| static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
 | |
| {
 | |
|     INTFLOAT *ptr;
 | |
|     int n, i;
 | |
| 
 | |
|     /* we antialias only "long" bands */
 | |
|     if (g->block_type == 2) {
 | |
|         if (!g->switch_point)
 | |
|             return;
 | |
|         /* XXX: check this for 8000Hz case */
 | |
|         n = 1;
 | |
|     } else {
 | |
|         n = SBLIMIT - 1;
 | |
|     }
 | |
| 
 | |
|     ptr = g->sb_hybrid + 18;
 | |
|     for (i = n; i > 0; i--) {
 | |
|         AA(0);
 | |
|         AA(1);
 | |
|         AA(2);
 | |
|         AA(3);
 | |
|         AA(4);
 | |
|         AA(5);
 | |
|         AA(6);
 | |
|         AA(7);
 | |
| 
 | |
|         ptr += 18;
 | |
|     }
 | |
| }
 | |
| #endif /* compute_antialias */
 | |
| 
 | |
| static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
 | |
|                           INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
 | |
| {
 | |
|     INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
 | |
|     INTFLOAT out2[12];
 | |
|     int i, j, mdct_long_end, sblimit;
 | |
| 
 | |
|     /* find last non zero block */
 | |
|     ptr  = g->sb_hybrid + 576;
 | |
|     ptr1 = g->sb_hybrid + 2 * 18;
 | |
|     while (ptr >= ptr1) {
 | |
|         int32_t *p;
 | |
|         ptr -= 6;
 | |
|         p    = (int32_t*)ptr;
 | |
|         if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
 | |
|             break;
 | |
|     }
 | |
|     sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
 | |
| 
 | |
|     if (g->block_type == 2) {
 | |
|         /* XXX: check for 8000 Hz */
 | |
|         if (g->switch_point)
 | |
|             mdct_long_end = 2;
 | |
|         else
 | |
|             mdct_long_end = 0;
 | |
|     } else {
 | |
|         mdct_long_end = sblimit;
 | |
|     }
 | |
| 
 | |
|     s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
 | |
|                                      mdct_long_end, g->switch_point,
 | |
|                                      g->block_type);
 | |
| 
 | |
|     buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
 | |
|     ptr = g->sb_hybrid + 18 * mdct_long_end;
 | |
| 
 | |
|     for (j = mdct_long_end; j < sblimit; j++) {
 | |
|         /* select frequency inversion */
 | |
|         win     = RENAME(ff_mdct_win)[2 + (4  & -(j & 1))];
 | |
|         out_ptr = sb_samples + j;
 | |
| 
 | |
|         for (i = 0; i < 6; i++) {
 | |
|             *out_ptr = buf[4*i];
 | |
|             out_ptr += SBLIMIT;
 | |
|         }
 | |
|         imdct12(out2, ptr + 0);
 | |
|         for (i = 0; i < 6; i++) {
 | |
|             *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*1)];
 | |
|             buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
 | |
|             out_ptr += SBLIMIT;
 | |
|         }
 | |
|         imdct12(out2, ptr + 1);
 | |
|         for (i = 0; i < 6; i++) {
 | |
|             *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*2)];
 | |
|             buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
 | |
|             out_ptr += SBLIMIT;
 | |
|         }
 | |
|         imdct12(out2, ptr + 2);
 | |
|         for (i = 0; i < 6; i++) {
 | |
|             buf[4*(i + 6*0)] = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*0)];
 | |
|             buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
 | |
|             buf[4*(i + 6*2)] = 0;
 | |
|         }
 | |
|         ptr += 18;
 | |
|         buf += (j&3) != 3 ? 1 : (4*18-3);
 | |
|     }
 | |
|     /* zero bands */
 | |
|     for (j = sblimit; j < SBLIMIT; j++) {
 | |
|         /* overlap */
 | |
|         out_ptr = sb_samples + j;
 | |
|         for (i = 0; i < 18; i++) {
 | |
|             *out_ptr = buf[4*i];
 | |
|             buf[4*i]   = 0;
 | |
|             out_ptr += SBLIMIT;
 | |
|         }
 | |
|         buf += (j&3) != 3 ? 1 : (4*18-3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* main layer3 decoding function */
 | |
| static int mp_decode_layer3(MPADecodeContext *s)
 | |
| {
 | |
|     int nb_granules, main_data_begin;
 | |
|     int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
 | |
|     GranuleDef *g;
 | |
|     int16_t exponents[576]; //FIXME try INTFLOAT
 | |
| 
 | |
|     /* read side info */
 | |
|     if (s->lsf) {
 | |
|         main_data_begin = get_bits(&s->gb, 8);
 | |
|         skip_bits(&s->gb, s->nb_channels);
 | |
|         nb_granules = 1;
 | |
|     } else {
 | |
|         main_data_begin = get_bits(&s->gb, 9);
 | |
|         if (s->nb_channels == 2)
 | |
|             skip_bits(&s->gb, 3);
 | |
|         else
 | |
|             skip_bits(&s->gb, 5);
 | |
|         nb_granules = 2;
 | |
|         for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|             s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
 | |
|             s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (gr = 0; gr < nb_granules; gr++) {
 | |
|         for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|             av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
 | |
|             g = &s->granules[ch][gr];
 | |
|             g->part2_3_length = get_bits(&s->gb, 12);
 | |
|             g->big_values     = get_bits(&s->gb,  9);
 | |
|             if (g->big_values > 288) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             g->global_gain = get_bits(&s->gb, 8);
 | |
|             /* if MS stereo only is selected, we precompute the
 | |
|                1/sqrt(2) renormalization factor */
 | |
|             if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
 | |
|                 MODE_EXT_MS_STEREO)
 | |
|                 g->global_gain -= 2;
 | |
|             if (s->lsf)
 | |
|                 g->scalefac_compress = get_bits(&s->gb, 9);
 | |
|             else
 | |
|                 g->scalefac_compress = get_bits(&s->gb, 4);
 | |
|             blocksplit_flag = get_bits1(&s->gb);
 | |
|             if (blocksplit_flag) {
 | |
|                 g->block_type = get_bits(&s->gb, 2);
 | |
|                 if (g->block_type == 0) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 g->switch_point = get_bits1(&s->gb);
 | |
|                 for (i = 0; i < 2; i++)
 | |
|                     g->table_select[i] = get_bits(&s->gb, 5);
 | |
|                 for (i = 0; i < 3; i++)
 | |
|                     g->subblock_gain[i] = get_bits(&s->gb, 3);
 | |
|                 init_short_region(s, g);
 | |
|             } else {
 | |
|                 int region_address1, region_address2;
 | |
|                 g->block_type = 0;
 | |
|                 g->switch_point = 0;
 | |
|                 for (i = 0; i < 3; i++)
 | |
|                     g->table_select[i] = get_bits(&s->gb, 5);
 | |
|                 /* compute huffman coded region sizes */
 | |
|                 region_address1 = get_bits(&s->gb, 4);
 | |
|                 region_address2 = get_bits(&s->gb, 3);
 | |
|                 av_dlog(s->avctx, "region1=%d region2=%d\n",
 | |
|                         region_address1, region_address2);
 | |
|                 init_long_region(s, g, region_address1, region_address2);
 | |
|             }
 | |
|             region_offset2size(g);
 | |
|             compute_band_indexes(s, g);
 | |
| 
 | |
|             g->preflag = 0;
 | |
|             if (!s->lsf)
 | |
|                 g->preflag = get_bits1(&s->gb);
 | |
|             g->scalefac_scale     = get_bits1(&s->gb);
 | |
|             g->count1table_select = get_bits1(&s->gb);
 | |
|             av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
 | |
|                     g->block_type, g->switch_point);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!s->adu_mode) {
 | |
|         int skip;
 | |
|         const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
 | |
|         int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0, EXTRABYTES);
 | |
|         av_assert1((get_bits_count(&s->gb) & 7) == 0);
 | |
|         /* now we get bits from the main_data_begin offset */
 | |
|         av_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
 | |
|                 main_data_begin, s->last_buf_size);
 | |
| 
 | |
|         memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
 | |
|         s->in_gb = s->gb;
 | |
|         init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
 | |
| #if !UNCHECKED_BITSTREAM_READER
 | |
|         s->gb.size_in_bits_plus8 += FFMAX(extrasize, LAST_BUF_SIZE - s->last_buf_size) * 8;
 | |
| #endif
 | |
|         s->last_buf_size <<= 3;
 | |
|         for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
 | |
|             for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|                 g = &s->granules[ch][gr];
 | |
|                 s->last_buf_size += g->part2_3_length;
 | |
|                 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
 | |
|                 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
 | |
|             }
 | |
|         }
 | |
|         skip = s->last_buf_size - 8 * main_data_begin;
 | |
|         if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
 | |
|             skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
 | |
|             s->gb           = s->in_gb;
 | |
|             s->in_gb.buffer = NULL;
 | |
|         } else {
 | |
|             skip_bits_long(&s->gb, skip);
 | |
|         }
 | |
|     } else {
 | |
|         gr = 0;
 | |
|     }
 | |
| 
 | |
|     for (; gr < nb_granules; gr++) {
 | |
|         for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|             g = &s->granules[ch][gr];
 | |
|             bits_pos = get_bits_count(&s->gb);
 | |
| 
 | |
|             if (!s->lsf) {
 | |
|                 uint8_t *sc;
 | |
|                 int slen, slen1, slen2;
 | |
| 
 | |
|                 /* MPEG1 scale factors */
 | |
|                 slen1 = slen_table[0][g->scalefac_compress];
 | |
|                 slen2 = slen_table[1][g->scalefac_compress];
 | |
|                 av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
 | |
|                 if (g->block_type == 2) {
 | |
|                     n = g->switch_point ? 17 : 18;
 | |
|                     j = 0;
 | |
|                     if (slen1) {
 | |
|                         for (i = 0; i < n; i++)
 | |
|                             g->scale_factors[j++] = get_bits(&s->gb, slen1);
 | |
|                     } else {
 | |
|                         for (i = 0; i < n; i++)
 | |
|                             g->scale_factors[j++] = 0;
 | |
|                     }
 | |
|                     if (slen2) {
 | |
|                         for (i = 0; i < 18; i++)
 | |
|                             g->scale_factors[j++] = get_bits(&s->gb, slen2);
 | |
|                         for (i = 0; i < 3; i++)
 | |
|                             g->scale_factors[j++] = 0;
 | |
|                     } else {
 | |
|                         for (i = 0; i < 21; i++)
 | |
|                             g->scale_factors[j++] = 0;
 | |
|                     }
 | |
|                 } else {
 | |
|                     sc = s->granules[ch][0].scale_factors;
 | |
|                     j = 0;
 | |
|                     for (k = 0; k < 4; k++) {
 | |
|                         n = k == 0 ? 6 : 5;
 | |
|                         if ((g->scfsi & (0x8 >> k)) == 0) {
 | |
|                             slen = (k < 2) ? slen1 : slen2;
 | |
|                             if (slen) {
 | |
|                                 for (i = 0; i < n; i++)
 | |
|                                     g->scale_factors[j++] = get_bits(&s->gb, slen);
 | |
|                             } else {
 | |
|                                 for (i = 0; i < n; i++)
 | |
|                                     g->scale_factors[j++] = 0;
 | |
|                             }
 | |
|                         } else {
 | |
|                             /* simply copy from last granule */
 | |
|                             for (i = 0; i < n; i++) {
 | |
|                                 g->scale_factors[j] = sc[j];
 | |
|                                 j++;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     g->scale_factors[j++] = 0;
 | |
|                 }
 | |
|             } else {
 | |
|                 int tindex, tindex2, slen[4], sl, sf;
 | |
| 
 | |
|                 /* LSF scale factors */
 | |
|                 if (g->block_type == 2)
 | |
|                     tindex = g->switch_point ? 2 : 1;
 | |
|                 else
 | |
|                     tindex = 0;
 | |
| 
 | |
|                 sf = g->scalefac_compress;
 | |
|                 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
 | |
|                     /* intensity stereo case */
 | |
|                     sf >>= 1;
 | |
|                     if (sf < 180) {
 | |
|                         lsf_sf_expand(slen, sf, 6, 6, 0);
 | |
|                         tindex2 = 3;
 | |
|                     } else if (sf < 244) {
 | |
|                         lsf_sf_expand(slen, sf - 180, 4, 4, 0);
 | |
|                         tindex2 = 4;
 | |
|                     } else {
 | |
|                         lsf_sf_expand(slen, sf - 244, 3, 0, 0);
 | |
|                         tindex2 = 5;
 | |
|                     }
 | |
|                 } else {
 | |
|                     /* normal case */
 | |
|                     if (sf < 400) {
 | |
|                         lsf_sf_expand(slen, sf, 5, 4, 4);
 | |
|                         tindex2 = 0;
 | |
|                     } else if (sf < 500) {
 | |
|                         lsf_sf_expand(slen, sf - 400, 5, 4, 0);
 | |
|                         tindex2 = 1;
 | |
|                     } else {
 | |
|                         lsf_sf_expand(slen, sf - 500, 3, 0, 0);
 | |
|                         tindex2 = 2;
 | |
|                         g->preflag = 1;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 j = 0;
 | |
|                 for (k = 0; k < 4; k++) {
 | |
|                     n  = lsf_nsf_table[tindex2][tindex][k];
 | |
|                     sl = slen[k];
 | |
|                     if (sl) {
 | |
|                         for (i = 0; i < n; i++)
 | |
|                             g->scale_factors[j++] = get_bits(&s->gb, sl);
 | |
|                     } else {
 | |
|                         for (i = 0; i < n; i++)
 | |
|                             g->scale_factors[j++] = 0;
 | |
|                     }
 | |
|                 }
 | |
|                 /* XXX: should compute exact size */
 | |
|                 for (; j < 40; j++)
 | |
|                     g->scale_factors[j] = 0;
 | |
|             }
 | |
| 
 | |
|             exponents_from_scale_factors(s, g, exponents);
 | |
| 
 | |
|             /* read Huffman coded residue */
 | |
|             huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
 | |
|         } /* ch */
 | |
| 
 | |
|         if (s->mode == MPA_JSTEREO)
 | |
|             compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
 | |
| 
 | |
|         for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|             g = &s->granules[ch][gr];
 | |
| 
 | |
|             reorder_block(s, g);
 | |
|             compute_antialias(s, g);
 | |
|             compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
 | |
|         }
 | |
|     } /* gr */
 | |
|     if (get_bits_count(&s->gb) < 0)
 | |
|         skip_bits_long(&s->gb, -get_bits_count(&s->gb));
 | |
|     return nb_granules * 18;
 | |
| }
 | |
| 
 | |
| static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
 | |
|                            const uint8_t *buf, int buf_size)
 | |
| {
 | |
|     int i, nb_frames, ch, ret;
 | |
|     OUT_INT *samples_ptr;
 | |
| 
 | |
|     init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
 | |
| 
 | |
|     /* skip error protection field */
 | |
|     if (s->error_protection)
 | |
|         skip_bits(&s->gb, 16);
 | |
| 
 | |
|     switch(s->layer) {
 | |
|     case 1:
 | |
|         s->avctx->frame_size = 384;
 | |
|         nb_frames = mp_decode_layer1(s);
 | |
|         break;
 | |
|     case 2:
 | |
|         s->avctx->frame_size = 1152;
 | |
|         nb_frames = mp_decode_layer2(s);
 | |
|         break;
 | |
|     case 3:
 | |
|         s->avctx->frame_size = s->lsf ? 576 : 1152;
 | |
|     default:
 | |
|         nb_frames = mp_decode_layer3(s);
 | |
| 
 | |
|         s->last_buf_size=0;
 | |
|         if (s->in_gb.buffer) {
 | |
|             align_get_bits(&s->gb);
 | |
|             i = get_bits_left(&s->gb)>>3;
 | |
|             if (i >= 0 && i <= BACKSTEP_SIZE) {
 | |
|                 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
 | |
|                 s->last_buf_size=i;
 | |
|             } else
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
 | |
|             s->gb           = s->in_gb;
 | |
|             s->in_gb.buffer = NULL;
 | |
|         }
 | |
| 
 | |
|         align_get_bits(&s->gb);
 | |
|         av_assert1((get_bits_count(&s->gb) & 7) == 0);
 | |
|         i = get_bits_left(&s->gb) >> 3;
 | |
| 
 | |
|         if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
 | |
|             if (i < 0)
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
 | |
|             i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
 | |
|         }
 | |
|         av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
 | |
|         memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
 | |
|         s->last_buf_size += i;
 | |
|     }
 | |
| 
 | |
|     if(nb_frames < 0)
 | |
|         return nb_frames;
 | |
| 
 | |
|     /* get output buffer */
 | |
|     if (!samples) {
 | |
|         av_assert0(s->frame != NULL);
 | |
|         s->frame->nb_samples = s->avctx->frame_size;
 | |
|         if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0)
 | |
|             return ret;
 | |
|         samples = (OUT_INT **)s->frame->extended_data;
 | |
|     }
 | |
| 
 | |
|     /* apply the synthesis filter */
 | |
|     for (ch = 0; ch < s->nb_channels; ch++) {
 | |
|         int sample_stride;
 | |
|         if (s->avctx->sample_fmt == OUT_FMT_P) {
 | |
|             samples_ptr   = samples[ch];
 | |
|             sample_stride = 1;
 | |
|         } else {
 | |
|             samples_ptr   = samples[0] + ch;
 | |
|             sample_stride = s->nb_channels;
 | |
|         }
 | |
|         for (i = 0; i < nb_frames; i++) {
 | |
|             RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
 | |
|                                         &(s->synth_buf_offset[ch]),
 | |
|                                         RENAME(ff_mpa_synth_window),
 | |
|                                         &s->dither_state, samples_ptr,
 | |
|                                         sample_stride, s->sb_samples[ch][i]);
 | |
|             samples_ptr += 32 * sample_stride;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
 | |
| }
 | |
| 
 | |
| static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
 | |
|                         AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf  = avpkt->data;
 | |
|     int buf_size        = avpkt->size;
 | |
|     MPADecodeContext *s = avctx->priv_data;
 | |
|     uint32_t header;
 | |
|     int ret;
 | |
| 
 | |
|     while(buf_size && !*buf){
 | |
|         buf++;
 | |
|         buf_size--;
 | |
|     }
 | |
| 
 | |
|     if (buf_size < HEADER_SIZE)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     header = AV_RB32(buf);
 | |
|     if (header>>8 == AV_RB32("TAG")>>8) {
 | |
|         av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
 | |
|         return buf_size;
 | |
|     }
 | |
|     if (ff_mpa_check_header(header) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Header missing\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
 | |
|         /* free format: prepare to compute frame size */
 | |
|         s->frame_size = -1;
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     /* update codec info */
 | |
|     avctx->channels       = s->nb_channels;
 | |
|     avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
 | |
|     if (!avctx->bit_rate)
 | |
|         avctx->bit_rate = s->bit_rate;
 | |
| 
 | |
|     if (s->frame_size <= 0 || s->frame_size > buf_size) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     } else if (s->frame_size < buf_size) {
 | |
|         av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
 | |
|         buf_size= s->frame_size;
 | |
|     }
 | |
| 
 | |
|     s->frame = data;
 | |
| 
 | |
|     ret = mp_decode_frame(s, NULL, buf, buf_size);
 | |
|     if (ret >= 0) {
 | |
|         s->frame->nb_samples = avctx->frame_size;
 | |
|         *got_frame_ptr       = 1;
 | |
|         avctx->sample_rate   = s->sample_rate;
 | |
|         //FIXME maybe move the other codec info stuff from above here too
 | |
|     } else {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
 | |
|         /* Only return an error if the bad frame makes up the whole packet or
 | |
|          * the error is related to buffer management.
 | |
|          * If there is more data in the packet, just consume the bad frame
 | |
|          * instead of returning an error, which would discard the whole
 | |
|          * packet. */
 | |
|         *got_frame_ptr = 0;
 | |
|         if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
 | |
|             return ret;
 | |
|     }
 | |
|     s->frame_size = 0;
 | |
|     return buf_size;
 | |
| }
 | |
| 
 | |
| static void mp_flush(MPADecodeContext *ctx)
 | |
| {
 | |
|     memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
 | |
|     ctx->last_buf_size = 0;
 | |
| }
 | |
| 
 | |
| static void flush(AVCodecContext *avctx)
 | |
| {
 | |
|     mp_flush(avctx->priv_data);
 | |
| }
 | |
| 
 | |
| #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
 | |
| static int decode_frame_adu(AVCodecContext *avctx, void *data,
 | |
|                             int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf  = avpkt->data;
 | |
|     int buf_size        = avpkt->size;
 | |
|     MPADecodeContext *s = avctx->priv_data;
 | |
|     uint32_t header;
 | |
|     int len, ret;
 | |
|     int av_unused out_size;
 | |
| 
 | |
|     len = buf_size;
 | |
| 
 | |
|     // Discard too short frames
 | |
|     if (buf_size < HEADER_SIZE) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (len > MPA_MAX_CODED_FRAME_SIZE)
 | |
|         len = MPA_MAX_CODED_FRAME_SIZE;
 | |
| 
 | |
|     // Get header and restore sync word
 | |
|     header = AV_RB32(buf) | 0xffe00000;
 | |
| 
 | |
|     if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
 | |
|     /* update codec info */
 | |
|     avctx->sample_rate = s->sample_rate;
 | |
|     avctx->channels    = s->nb_channels;
 | |
|     if (!avctx->bit_rate)
 | |
|         avctx->bit_rate = s->bit_rate;
 | |
| 
 | |
|     s->frame_size = len;
 | |
| 
 | |
|     s->frame = data;
 | |
| 
 | |
|     ret = mp_decode_frame(s, NULL, buf, buf_size);
 | |
|     if (ret < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     *got_frame_ptr = 1;
 | |
| 
 | |
|     return buf_size;
 | |
| }
 | |
| #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
 | |
| 
 | |
| #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
 | |
| 
 | |
| /**
 | |
|  * Context for MP3On4 decoder
 | |
|  */
 | |
| typedef struct MP3On4DecodeContext {
 | |
|     int frames;                     ///< number of mp3 frames per block (number of mp3 decoder instances)
 | |
|     int syncword;                   ///< syncword patch
 | |
|     const uint8_t *coff;            ///< channel offsets in output buffer
 | |
|     MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
 | |
| } MP3On4DecodeContext;
 | |
| 
 | |
| #include "mpeg4audio.h"
 | |
| 
 | |
| /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
 | |
| 
 | |
| /* number of mp3 decoder instances */
 | |
| static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
 | |
| 
 | |
| /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
 | |
| static const uint8_t chan_offset[8][5] = {
 | |
|     { 0             },
 | |
|     { 0             },  // C
 | |
|     { 0             },  // FLR
 | |
|     { 2, 0          },  // C FLR
 | |
|     { 2, 0, 3       },  // C FLR BS
 | |
|     { 2, 0, 3       },  // C FLR BLRS
 | |
|     { 2, 0, 4, 3    },  // C FLR BLRS LFE
 | |
|     { 2, 0, 6, 4, 3 },  // C FLR BLRS BLR LFE
 | |
| };
 | |
| 
 | |
| /* mp3on4 channel layouts */
 | |
| static const int16_t chan_layout[8] = {
 | |
|     0,
 | |
|     AV_CH_LAYOUT_MONO,
 | |
|     AV_CH_LAYOUT_STEREO,
 | |
|     AV_CH_LAYOUT_SURROUND,
 | |
|     AV_CH_LAYOUT_4POINT0,
 | |
|     AV_CH_LAYOUT_5POINT0,
 | |
|     AV_CH_LAYOUT_5POINT1,
 | |
|     AV_CH_LAYOUT_7POINT1
 | |
| };
 | |
| 
 | |
| static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
 | |
| {
 | |
|     MP3On4DecodeContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->frames; i++)
 | |
|         av_free(s->mp3decctx[i]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int decode_init_mp3on4(AVCodecContext * avctx)
 | |
| {
 | |
|     MP3On4DecodeContext *s = avctx->priv_data;
 | |
|     MPEG4AudioConfig cfg;
 | |
|     int i;
 | |
| 
 | |
|     if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
 | |
|                                  avctx->extradata_size * 8, 1);
 | |
|     if (!cfg.chan_config || cfg.chan_config > 7) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     s->frames             = mp3Frames[cfg.chan_config];
 | |
|     s->coff               = chan_offset[cfg.chan_config];
 | |
|     avctx->channels       = ff_mpeg4audio_channels[cfg.chan_config];
 | |
|     avctx->channel_layout = chan_layout[cfg.chan_config];
 | |
| 
 | |
|     if (cfg.sample_rate < 16000)
 | |
|         s->syncword = 0xffe00000;
 | |
|     else
 | |
|         s->syncword = 0xfff00000;
 | |
| 
 | |
|     /* Init the first mp3 decoder in standard way, so that all tables get builded
 | |
|      * We replace avctx->priv_data with the context of the first decoder so that
 | |
|      * decode_init() does not have to be changed.
 | |
|      * Other decoders will be initialized here copying data from the first context
 | |
|      */
 | |
|     // Allocate zeroed memory for the first decoder context
 | |
|     s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
 | |
|     if (!s->mp3decctx[0])
 | |
|         goto alloc_fail;
 | |
|     // Put decoder context in place to make init_decode() happy
 | |
|     avctx->priv_data = s->mp3decctx[0];
 | |
|     decode_init(avctx);
 | |
|     // Restore mp3on4 context pointer
 | |
|     avctx->priv_data = s;
 | |
|     s->mp3decctx[0]->adu_mode = 1; // Set adu mode
 | |
| 
 | |
|     /* Create a separate codec/context for each frame (first is already ok).
 | |
|      * Each frame is 1 or 2 channels - up to 5 frames allowed
 | |
|      */
 | |
|     for (i = 1; i < s->frames; i++) {
 | |
|         s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
 | |
|         if (!s->mp3decctx[i])
 | |
|             goto alloc_fail;
 | |
|         s->mp3decctx[i]->adu_mode = 1;
 | |
|         s->mp3decctx[i]->avctx = avctx;
 | |
|         s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| alloc_fail:
 | |
|     decode_close_mp3on4(avctx);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void flush_mp3on4(AVCodecContext *avctx)
 | |
| {
 | |
|     int i;
 | |
|     MP3On4DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     for (i = 0; i < s->frames; i++)
 | |
|         mp_flush(s->mp3decctx[i]);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
 | |
|                                int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     AVFrame *frame         = data;
 | |
|     const uint8_t *buf     = avpkt->data;
 | |
|     int buf_size           = avpkt->size;
 | |
|     MP3On4DecodeContext *s = avctx->priv_data;
 | |
|     MPADecodeContext *m;
 | |
|     int fsize, len = buf_size, out_size = 0;
 | |
|     uint32_t header;
 | |
|     OUT_INT **out_samples;
 | |
|     OUT_INT *outptr[2];
 | |
|     int fr, ch, ret;
 | |
| 
 | |
|     /* get output buffer */
 | |
|     frame->nb_samples = MPA_FRAME_SIZE;
 | |
|     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
 | |
|         return ret;
 | |
|     out_samples = (OUT_INT **)frame->extended_data;
 | |
| 
 | |
|     // Discard too short frames
 | |
|     if (buf_size < HEADER_SIZE)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     avctx->bit_rate = 0;
 | |
| 
 | |
|     ch = 0;
 | |
|     for (fr = 0; fr < s->frames; fr++) {
 | |
|         fsize = AV_RB16(buf) >> 4;
 | |
|         fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
 | |
|         m     = s->mp3decctx[fr];
 | |
|         av_assert1(m);
 | |
| 
 | |
|         if (fsize < HEADER_SIZE) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
 | |
| 
 | |
|         if (ff_mpa_check_header(header) < 0) // Bad header, discard block
 | |
|             break;
 | |
| 
 | |
|         avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
 | |
| 
 | |
|         if (ch + m->nb_channels > avctx->channels || s->coff[fr] + m->nb_channels > avctx->channels) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
 | |
|                                         "channel count\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         ch += m->nb_channels;
 | |
| 
 | |
|         outptr[0] = out_samples[s->coff[fr]];
 | |
|         if (m->nb_channels > 1)
 | |
|             outptr[1] = out_samples[s->coff[fr] + 1];
 | |
| 
 | |
|         if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0)
 | |
|             return ret;
 | |
| 
 | |
|         out_size += ret;
 | |
|         buf      += fsize;
 | |
|         len      -= fsize;
 | |
| 
 | |
|         avctx->bit_rate += m->bit_rate;
 | |
|     }
 | |
| 
 | |
|     /* update codec info */
 | |
|     avctx->sample_rate = s->mp3decctx[0]->sample_rate;
 | |
| 
 | |
|     frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
 | |
|     *got_frame_ptr    = 1;
 | |
| 
 | |
|     return buf_size;
 | |
| }
 | |
| #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
 | |
| 
 | |
| #if !CONFIG_FLOAT
 | |
| #if CONFIG_MP1_DECODER
 | |
| AVCodec ff_mp1_decoder = {
 | |
|     .name           = "mp1",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_MP1,
 | |
|     .priv_data_size = sizeof(MPADecodeContext),
 | |
|     .init           = decode_init,
 | |
|     .decode         = decode_frame,
 | |
|     .capabilities   = CODEC_CAP_DR1,
 | |
|     .flush          = flush,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
 | |
|                                                       AV_SAMPLE_FMT_S16,
 | |
|                                                       AV_SAMPLE_FMT_NONE },
 | |
| };
 | |
| #endif
 | |
| #if CONFIG_MP2_DECODER
 | |
| AVCodec ff_mp2_decoder = {
 | |
|     .name           = "mp2",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_MP2,
 | |
|     .priv_data_size = sizeof(MPADecodeContext),
 | |
|     .init           = decode_init,
 | |
|     .decode         = decode_frame,
 | |
|     .capabilities   = CODEC_CAP_DR1,
 | |
|     .flush          = flush,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
 | |
|                                                       AV_SAMPLE_FMT_S16,
 | |
|                                                       AV_SAMPLE_FMT_NONE },
 | |
| };
 | |
| #endif
 | |
| #if CONFIG_MP3_DECODER
 | |
| AVCodec ff_mp3_decoder = {
 | |
|     .name           = "mp3",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_MP3,
 | |
|     .priv_data_size = sizeof(MPADecodeContext),
 | |
|     .init           = decode_init,
 | |
|     .decode         = decode_frame,
 | |
|     .capabilities   = CODEC_CAP_DR1,
 | |
|     .flush          = flush,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
 | |
|                                                       AV_SAMPLE_FMT_S16,
 | |
|                                                       AV_SAMPLE_FMT_NONE },
 | |
| };
 | |
| #endif
 | |
| #if CONFIG_MP3ADU_DECODER
 | |
| AVCodec ff_mp3adu_decoder = {
 | |
|     .name           = "mp3adu",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_MP3ADU,
 | |
|     .priv_data_size = sizeof(MPADecodeContext),
 | |
|     .init           = decode_init,
 | |
|     .decode         = decode_frame_adu,
 | |
|     .capabilities   = CODEC_CAP_DR1,
 | |
|     .flush          = flush,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
 | |
|                                                       AV_SAMPLE_FMT_S16,
 | |
|                                                       AV_SAMPLE_FMT_NONE },
 | |
| };
 | |
| #endif
 | |
| #if CONFIG_MP3ON4_DECODER
 | |
| AVCodec ff_mp3on4_decoder = {
 | |
|     .name           = "mp3on4",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_MP3ON4,
 | |
|     .priv_data_size = sizeof(MP3On4DecodeContext),
 | |
|     .init           = decode_init_mp3on4,
 | |
|     .close          = decode_close_mp3on4,
 | |
|     .decode         = decode_frame_mp3on4,
 | |
|     .capabilities   = CODEC_CAP_DR1,
 | |
|     .flush          = flush_mp3on4,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("MP3onMP4"),
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
 | |
|                                                       AV_SAMPLE_FMT_NONE },
 | |
| };
 | |
| #endif
 | |
| #endif
 |