mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 04:26:37 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1337 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1337 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * DCA compatible decoder
 | |
|  * Copyright (C) 2004 Gildas Bazin
 | |
|  * Copyright (C) 2004 Benjamin Zores
 | |
|  * Copyright (C) 2006 Benjamin Larsson
 | |
|  * Copyright (C) 2007 Konstantin Shishkov
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file dca.c
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "dsputil.h"
 | |
| #include "bitstream.h"
 | |
| #include "dcadata.h"
 | |
| #include "dcahuff.h"
 | |
| #include "dca.h"
 | |
| 
 | |
| //#define TRACE
 | |
| 
 | |
| #define DCA_PRIM_CHANNELS_MAX (5)
 | |
| #define DCA_SUBBANDS (32)
 | |
| #define DCA_ABITS_MAX (32)      /* Should be 28 */
 | |
| #define DCA_SUBSUBFAMES_MAX (4)
 | |
| #define DCA_LFE_MAX (3)
 | |
| 
 | |
| enum DCAMode {
 | |
|     DCA_MONO = 0,
 | |
|     DCA_CHANNEL,
 | |
|     DCA_STEREO,
 | |
|     DCA_STEREO_SUMDIFF,
 | |
|     DCA_STEREO_TOTAL,
 | |
|     DCA_3F,
 | |
|     DCA_2F1R,
 | |
|     DCA_3F1R,
 | |
|     DCA_2F2R,
 | |
|     DCA_3F2R,
 | |
|     DCA_4F2R
 | |
| };
 | |
| 
 | |
| /* Tables for mapping dts channel configurations to libavcodec multichannel api.
 | |
|  * Some compromises have been made for special configurations. Most configurations
 | |
|  * are never used so complete accuracy is not needed.
 | |
|  *
 | |
|  * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
 | |
|  * S  -> side, when both rear and back are configured move one of them to the side channel
 | |
|  * OV -> center back
 | |
|  * All 2 channel configurations -> CH_LAYOUT_STEREO
 | |
|  */
 | |
| 
 | |
| static const int64_t dca_core_channel_layout[] = {
 | |
|     CH_FRONT_CENTER,                                               ///< 1, A
 | |
|     CH_LAYOUT_STEREO,                                              ///< 2, A + B (dual mono)
 | |
|     CH_LAYOUT_STEREO,                                              ///< 2, L + R (stereo)
 | |
|     CH_LAYOUT_STEREO,                                              ///< 2, (L+R) + (L-R) (sum-difference)
 | |
|     CH_LAYOUT_STEREO,                                              ///< 2, LT +RT (left and right total)
 | |
|     CH_LAYOUT_STEREO|CH_FRONT_CENTER,                              ///< 3, C+L+R
 | |
|     CH_LAYOUT_STEREO|CH_BACK_CENTER,                               ///< 3, L+R+S
 | |
|     CH_LAYOUT_STEREO|CH_FRONT_CENTER|CH_BACK_CENTER,               ///< 4, C + L + R+ S
 | |
|     CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT,                   ///< 4, L + R +SL+ SR
 | |
|     CH_LAYOUT_STEREO|CH_FRONT_CENTER|CH_SIDE_LEFT|CH_SIDE_RIGHT,   ///< 5, C + L + R+ SL+SR
 | |
|     CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT|CH_FRONT_LEFT_OF_CENTER|CH_FRONT_RIGHT_OF_CENTER,                 ///< 6, CL + CR + L + R + SL + SR
 | |
|     CH_LAYOUT_STEREO|CH_BACK_LEFT|CH_BACK_RIGHT|CH_FRONT_CENTER|CH_BACK_CENTER,                                   ///< 6, C + L + R+ LR + RR + OV
 | |
|     CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_FRONT_LEFT_OF_CENTER|CH_BACK_CENTER|CH_BACK_LEFT|CH_BACK_RIGHT,   ///< 6, CF+ CR+LF+ RF+LR + RR
 | |
|     CH_FRONT_LEFT_OF_CENTER|CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
 | |
|     CH_FRONT_LEFT_OF_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT|CH_BACK_LEFT|CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2+ SR1 + SR2
 | |
|     CH_FRONT_LEFT_OF_CENTER|CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_BACK_CENTER|CH_SIDE_RIGHT, ///< 8, CL + C+ CR + L + R + SL + S+ SR
 | |
| };
 | |
| 
 | |
| static const int8_t dca_lfe_index[] = {
 | |
|     1,2,2,2,2,3,2,3,2,3,2,3,1,3,2,3
 | |
| };
 | |
| 
 | |
| static const int8_t dca_channel_reorder_lfe[][8] = {
 | |
|     { 0, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  3, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  4, -1, -1, -1, -1},
 | |
|     { 0,  1,  3,  4, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  4,  5, -1, -1, -1},
 | |
|     { 3,  4,  0,  1,  5,  6, -1, -1},
 | |
|     { 2,  0,  1,  4,  5,  6, -1, -1},
 | |
|     { 0,  6,  4,  5,  2,  3, -1, -1},
 | |
|     { 4,  2,  5,  0,  1,  6,  7, -1},
 | |
|     { 5,  6,  0,  1,  7,  3,  8,  4},
 | |
|     { 4,  2,  5,  0,  1,  6,  8,  7},
 | |
| };
 | |
| 
 | |
| static const int8_t dca_channel_reorder_nolfe[][8] = {
 | |
|     { 0, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  2, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  3, -1, -1, -1, -1},
 | |
|     { 0,  1,  2,  3, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  3,  4, -1, -1, -1},
 | |
|     { 2,  3,  0,  1,  4,  5, -1, -1},
 | |
|     { 2,  0,  1,  3,  4,  5, -1, -1},
 | |
|     { 0,  5,  3,  4,  1,  2, -1, -1},
 | |
|     { 3,  2,  4,  0,  1,  5,  6, -1},
 | |
|     { 4,  5,  0,  1,  6,  2,  7,  3},
 | |
|     { 3,  2,  4,  0,  1,  5,  7,  6},
 | |
| };
 | |
| 
 | |
| 
 | |
| #define DCA_DOLBY 101           /* FIXME */
 | |
| 
 | |
| #define DCA_CHANNEL_BITS 6
 | |
| #define DCA_CHANNEL_MASK 0x3F
 | |
| 
 | |
| #define DCA_LFE 0x80
 | |
| 
 | |
| #define HEADER_SIZE 14
 | |
| 
 | |
| #define DCA_MAX_FRAME_SIZE 16384
 | |
| 
 | |
| /** Bit allocation */
 | |
| typedef struct {
 | |
|     int offset;                 ///< code values offset
 | |
|     int maxbits[8];             ///< max bits in VLC
 | |
|     int wrap;                   ///< wrap for get_vlc2()
 | |
|     VLC vlc[8];                 ///< actual codes
 | |
| } BitAlloc;
 | |
| 
 | |
| static BitAlloc dca_bitalloc_index;    ///< indexes for samples VLC select
 | |
| static BitAlloc dca_tmode;             ///< transition mode VLCs
 | |
| static BitAlloc dca_scalefactor;       ///< scalefactor VLCs
 | |
| static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
 | |
| 
 | |
| static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba, int idx)
 | |
| {
 | |
|     return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) + ba->offset;
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     AVCodecContext *avctx;
 | |
|     /* Frame header */
 | |
|     int frame_type;             ///< type of the current frame
 | |
|     int samples_deficit;        ///< deficit sample count
 | |
|     int crc_present;            ///< crc is present in the bitstream
 | |
|     int sample_blocks;          ///< number of PCM sample blocks
 | |
|     int frame_size;             ///< primary frame byte size
 | |
|     int amode;                  ///< audio channels arrangement
 | |
|     int sample_rate;            ///< audio sampling rate
 | |
|     int bit_rate;               ///< transmission bit rate
 | |
|     int bit_rate_index;         ///< transmission bit rate index
 | |
| 
 | |
|     int downmix;                ///< embedded downmix enabled
 | |
|     int dynrange;               ///< embedded dynamic range flag
 | |
|     int timestamp;              ///< embedded time stamp flag
 | |
|     int aux_data;               ///< auxiliary data flag
 | |
|     int hdcd;                   ///< source material is mastered in HDCD
 | |
|     int ext_descr;              ///< extension audio descriptor flag
 | |
|     int ext_coding;             ///< extended coding flag
 | |
|     int aspf;                   ///< audio sync word insertion flag
 | |
|     int lfe;                    ///< low frequency effects flag
 | |
|     int predictor_history;      ///< predictor history flag
 | |
|     int header_crc;             ///< header crc check bytes
 | |
|     int multirate_inter;        ///< multirate interpolator switch
 | |
|     int version;                ///< encoder software revision
 | |
|     int copy_history;           ///< copy history
 | |
|     int source_pcm_res;         ///< source pcm resolution
 | |
|     int front_sum;              ///< front sum/difference flag
 | |
|     int surround_sum;           ///< surround sum/difference flag
 | |
|     int dialog_norm;            ///< dialog normalisation parameter
 | |
| 
 | |
|     /* Primary audio coding header */
 | |
|     int subframes;              ///< number of subframes
 | |
|     int total_channels;         ///< number of channels including extensions
 | |
|     int prim_channels;          ///< number of primary audio channels
 | |
|     int subband_activity[DCA_PRIM_CHANNELS_MAX];    ///< subband activity count
 | |
|     int vq_start_subband[DCA_PRIM_CHANNELS_MAX];    ///< high frequency vq start subband
 | |
|     int joint_intensity[DCA_PRIM_CHANNELS_MAX];     ///< joint intensity coding index
 | |
|     int transient_huffman[DCA_PRIM_CHANNELS_MAX];   ///< transient mode code book
 | |
|     int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
 | |
|     int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX];    ///< bit allocation quantizer select
 | |
|     int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
 | |
|     float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX];   ///< scale factor adjustment
 | |
| 
 | |
|     /* Primary audio coding side information */
 | |
|     int subsubframes;           ///< number of subsubframes
 | |
|     int partial_samples;        ///< partial subsubframe samples count
 | |
|     int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];    ///< prediction mode (ADPCM used or not)
 | |
|     int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];      ///< prediction VQ coefs
 | |
|     int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];           ///< bit allocation index
 | |
|     int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];    ///< transition mode (transients)
 | |
|     int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2];    ///< scale factors (2 if transient)
 | |
|     int joint_huff[DCA_PRIM_CHANNELS_MAX];                       ///< joint subband scale factors codebook
 | |
|     int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
 | |
|     int downmix_coef[DCA_PRIM_CHANNELS_MAX][2];                  ///< stereo downmix coefficients
 | |
|     int dynrange_coef;                                           ///< dynamic range coefficient
 | |
| 
 | |
|     int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];       ///< VQ encoded high frequency subbands
 | |
| 
 | |
|     float lfe_data[2 * DCA_SUBSUBFAMES_MAX * DCA_LFE_MAX *
 | |
|                    2 /*history */ ];    ///< Low frequency effect data
 | |
|     int lfe_scale_factor;
 | |
| 
 | |
|     /* Subband samples history (for ADPCM) */
 | |
|     float subband_samples_hist[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
 | |
|     DECLARE_ALIGNED_16(float, subband_fir_hist[DCA_PRIM_CHANNELS_MAX][512]);
 | |
|     float subband_fir_noidea[DCA_PRIM_CHANNELS_MAX][32];
 | |
|     int hist_index[DCA_PRIM_CHANNELS_MAX];
 | |
| 
 | |
|     int output;                 ///< type of output
 | |
|     float add_bias;             ///< output bias
 | |
|     float scale_bias;           ///< output scale
 | |
| 
 | |
|     DECLARE_ALIGNED_16(float, samples[1536]);  /* 6 * 256 = 1536, might only need 5 */
 | |
|     const float *samples_chanptr[6];
 | |
| 
 | |
|     uint8_t dca_buffer[DCA_MAX_FRAME_SIZE];
 | |
|     int dca_buffer_size;        ///< how much data is in the dca_buffer
 | |
| 
 | |
|     const int8_t* channel_order_tab;                             ///< channel reordering table, lfe and non lfe
 | |
|     GetBitContext gb;
 | |
|     /* Current position in DCA frame */
 | |
|     int current_subframe;
 | |
|     int current_subsubframe;
 | |
| 
 | |
|     int debug_flag;             ///< used for suppressing repeated error messages output
 | |
|     DSPContext dsp;
 | |
|     MDCTContext imdct;
 | |
| } DCAContext;
 | |
| 
 | |
| static av_cold void dca_init_vlcs(void)
 | |
| {
 | |
|     static int vlcs_initialized = 0;
 | |
|     int i, j;
 | |
| 
 | |
|     if (vlcs_initialized)
 | |
|         return;
 | |
| 
 | |
|     dca_bitalloc_index.offset = 1;
 | |
|     dca_bitalloc_index.wrap = 2;
 | |
|     for (i = 0; i < 5; i++)
 | |
|         init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
 | |
|                  bitalloc_12_bits[i], 1, 1,
 | |
|                  bitalloc_12_codes[i], 2, 2, 1);
 | |
|     dca_scalefactor.offset = -64;
 | |
|     dca_scalefactor.wrap = 2;
 | |
|     for (i = 0; i < 5; i++)
 | |
|         init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
 | |
|                  scales_bits[i], 1, 1,
 | |
|                  scales_codes[i], 2, 2, 1);
 | |
|     dca_tmode.offset = 0;
 | |
|     dca_tmode.wrap = 1;
 | |
|     for (i = 0; i < 4; i++)
 | |
|         init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
 | |
|                  tmode_bits[i], 1, 1,
 | |
|                  tmode_codes[i], 2, 2, 1);
 | |
| 
 | |
|     for(i = 0; i < 10; i++)
 | |
|         for(j = 0; j < 7; j++){
 | |
|             if(!bitalloc_codes[i][j]) break;
 | |
|             dca_smpl_bitalloc[i+1].offset = bitalloc_offsets[i];
 | |
|             dca_smpl_bitalloc[i+1].wrap = 1 + (j > 4);
 | |
|             init_vlc(&dca_smpl_bitalloc[i+1].vlc[j], bitalloc_maxbits[i][j],
 | |
|                      bitalloc_sizes[i],
 | |
|                      bitalloc_bits[i][j], 1, 1,
 | |
|                      bitalloc_codes[i][j], 2, 2, 1);
 | |
|         }
 | |
|     vlcs_initialized = 1;
 | |
| }
 | |
| 
 | |
| static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
 | |
| {
 | |
|     while(len--)
 | |
|         *dst++ = get_bits(gb, bits);
 | |
| }
 | |
| 
 | |
| static int dca_parse_frame_header(DCAContext * s)
 | |
| {
 | |
|     int i, j;
 | |
|     static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
 | |
|     static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
 | |
|     static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
 | |
| 
 | |
|     init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
 | |
| 
 | |
|     /* Sync code */
 | |
|     get_bits(&s->gb, 32);
 | |
| 
 | |
|     /* Frame header */
 | |
|     s->frame_type        = get_bits(&s->gb, 1);
 | |
|     s->samples_deficit   = get_bits(&s->gb, 5) + 1;
 | |
|     s->crc_present       = get_bits(&s->gb, 1);
 | |
|     s->sample_blocks     = get_bits(&s->gb, 7) + 1;
 | |
|     s->frame_size        = get_bits(&s->gb, 14) + 1;
 | |
|     if (s->frame_size < 95)
 | |
|         return -1;
 | |
|     s->amode             = get_bits(&s->gb, 6);
 | |
|     s->sample_rate       = dca_sample_rates[get_bits(&s->gb, 4)];
 | |
|     if (!s->sample_rate)
 | |
|         return -1;
 | |
|     s->bit_rate_index    = get_bits(&s->gb, 5);
 | |
|     s->bit_rate          = dca_bit_rates[s->bit_rate_index];
 | |
|     if (!s->bit_rate)
 | |
|         return -1;
 | |
| 
 | |
|     s->downmix           = get_bits(&s->gb, 1);
 | |
|     s->dynrange          = get_bits(&s->gb, 1);
 | |
|     s->timestamp         = get_bits(&s->gb, 1);
 | |
|     s->aux_data          = get_bits(&s->gb, 1);
 | |
|     s->hdcd              = get_bits(&s->gb, 1);
 | |
|     s->ext_descr         = get_bits(&s->gb, 3);
 | |
|     s->ext_coding        = get_bits(&s->gb, 1);
 | |
|     s->aspf              = get_bits(&s->gb, 1);
 | |
|     s->lfe               = get_bits(&s->gb, 2);
 | |
|     s->predictor_history = get_bits(&s->gb, 1);
 | |
| 
 | |
|     /* TODO: check CRC */
 | |
|     if (s->crc_present)
 | |
|         s->header_crc    = get_bits(&s->gb, 16);
 | |
| 
 | |
|     s->multirate_inter   = get_bits(&s->gb, 1);
 | |
|     s->version           = get_bits(&s->gb, 4);
 | |
|     s->copy_history      = get_bits(&s->gb, 2);
 | |
|     s->source_pcm_res    = get_bits(&s->gb, 3);
 | |
|     s->front_sum         = get_bits(&s->gb, 1);
 | |
|     s->surround_sum      = get_bits(&s->gb, 1);
 | |
|     s->dialog_norm       = get_bits(&s->gb, 4);
 | |
| 
 | |
|     /* FIXME: channels mixing levels */
 | |
|     s->output = s->amode;
 | |
|     if(s->lfe) s->output |= DCA_LFE;
 | |
| 
 | |
| #ifdef TRACE
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
 | |
|            s->sample_blocks, s->sample_blocks * 32);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
 | |
|            s->amode, dca_channels[s->amode]);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
 | |
|            s->sample_rate);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
 | |
|            s->bit_rate);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
 | |
|            s->predictor_history);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
 | |
|            s->multirate_inter);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG,
 | |
|            "source pcm resolution: %i (%i bits/sample)\n",
 | |
|            s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
| #endif
 | |
| 
 | |
|     /* Primary audio coding header */
 | |
|     s->subframes         = get_bits(&s->gb, 4) + 1;
 | |
|     s->total_channels    = get_bits(&s->gb, 3) + 1;
 | |
|     s->prim_channels     = s->total_channels;
 | |
|     if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
 | |
|         s->prim_channels = DCA_PRIM_CHANNELS_MAX;   /* We only support DTS core */
 | |
| 
 | |
| 
 | |
|     for (i = 0; i < s->prim_channels; i++) {
 | |
|         s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
 | |
|         if (s->subband_activity[i] > DCA_SUBBANDS)
 | |
|             s->subband_activity[i] = DCA_SUBBANDS;
 | |
|     }
 | |
|     for (i = 0; i < s->prim_channels; i++) {
 | |
|         s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
 | |
|         if (s->vq_start_subband[i] > DCA_SUBBANDS)
 | |
|             s->vq_start_subband[i] = DCA_SUBBANDS;
 | |
|     }
 | |
|     get_array(&s->gb, s->joint_intensity,     s->prim_channels, 3);
 | |
|     get_array(&s->gb, s->transient_huffman,   s->prim_channels, 2);
 | |
|     get_array(&s->gb, s->scalefactor_huffman, s->prim_channels, 3);
 | |
|     get_array(&s->gb, s->bitalloc_huffman,    s->prim_channels, 3);
 | |
| 
 | |
|     /* Get codebooks quantization indexes */
 | |
|     memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
 | |
|     for (j = 1; j < 11; j++)
 | |
|         for (i = 0; i < s->prim_channels; i++)
 | |
|             s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
 | |
| 
 | |
|     /* Get scale factor adjustment */
 | |
|     for (j = 0; j < 11; j++)
 | |
|         for (i = 0; i < s->prim_channels; i++)
 | |
|             s->scalefactor_adj[i][j] = 1;
 | |
| 
 | |
|     for (j = 1; j < 11; j++)
 | |
|         for (i = 0; i < s->prim_channels; i++)
 | |
|             if (s->quant_index_huffman[i][j] < thr[j])
 | |
|                 s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
 | |
| 
 | |
|     if (s->crc_present) {
 | |
|         /* Audio header CRC check */
 | |
|         get_bits(&s->gb, 16);
 | |
|     }
 | |
| 
 | |
|     s->current_subframe = 0;
 | |
|     s->current_subsubframe = 0;
 | |
| 
 | |
| #ifdef TRACE
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
 | |
|     for(i = 0; i < s->prim_channels; i++){
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n", s->subband_activity[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n", s->vq_start_subband[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n", s->joint_intensity[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n", s->transient_huffman[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n", s->scalefactor_huffman[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n", s->bitalloc_huffman[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
 | |
|         for (j = 0; j < 11; j++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, " %i",
 | |
|                    s->quant_index_huffman[i][j]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
 | |
|         for (j = 0; j < 11; j++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline int get_scale(GetBitContext *gb, int level, int value)
 | |
| {
 | |
|    if (level < 5) {
 | |
|        /* huffman encoded */
 | |
|        value += get_bitalloc(gb, &dca_scalefactor, level);
 | |
|    } else if(level < 8)
 | |
|        value = get_bits(gb, level + 1);
 | |
|    return value;
 | |
| }
 | |
| 
 | |
| static int dca_subframe_header(DCAContext * s)
 | |
| {
 | |
|     /* Primary audio coding side information */
 | |
|     int j, k;
 | |
| 
 | |
|     s->subsubframes = get_bits(&s->gb, 2) + 1;
 | |
|     s->partial_samples = get_bits(&s->gb, 3);
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         for (k = 0; k < s->subband_activity[j]; k++)
 | |
|             s->prediction_mode[j][k] = get_bits(&s->gb, 1);
 | |
|     }
 | |
| 
 | |
|     /* Get prediction codebook */
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         for (k = 0; k < s->subband_activity[j]; k++) {
 | |
|             if (s->prediction_mode[j][k] > 0) {
 | |
|                 /* (Prediction coefficient VQ address) */
 | |
|                 s->prediction_vq[j][k] = get_bits(&s->gb, 12);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Bit allocation index */
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         for (k = 0; k < s->vq_start_subband[j]; k++) {
 | |
|             if (s->bitalloc_huffman[j] == 6)
 | |
|                 s->bitalloc[j][k] = get_bits(&s->gb, 5);
 | |
|             else if (s->bitalloc_huffman[j] == 5)
 | |
|                 s->bitalloc[j][k] = get_bits(&s->gb, 4);
 | |
|             else if (s->bitalloc_huffman[j] == 7) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR,
 | |
|                        "Invalid bit allocation index\n");
 | |
|                 return -1;
 | |
|             } else {
 | |
|                 s->bitalloc[j][k] =
 | |
|                     get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
 | |
|             }
 | |
| 
 | |
|             if (s->bitalloc[j][k] > 26) {
 | |
| //                 av_log(s->avctx,AV_LOG_DEBUG,"bitalloc index [%i][%i] too big (%i)\n",
 | |
| //                          j, k, s->bitalloc[j][k]);
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Transition mode */
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         for (k = 0; k < s->subband_activity[j]; k++) {
 | |
|             s->transition_mode[j][k] = 0;
 | |
|             if (s->subsubframes > 1 &&
 | |
|                 k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
 | |
|                 s->transition_mode[j][k] =
 | |
|                     get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         const uint32_t *scale_table;
 | |
|         int scale_sum;
 | |
| 
 | |
|         memset(s->scale_factor[j], 0, s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
 | |
| 
 | |
|         if (s->scalefactor_huffman[j] == 6)
 | |
|             scale_table = scale_factor_quant7;
 | |
|         else
 | |
|             scale_table = scale_factor_quant6;
 | |
| 
 | |
|         /* When huffman coded, only the difference is encoded */
 | |
|         scale_sum = 0;
 | |
| 
 | |
|         for (k = 0; k < s->subband_activity[j]; k++) {
 | |
|             if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
 | |
|                 scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
 | |
|                 s->scale_factor[j][k][0] = scale_table[scale_sum];
 | |
|             }
 | |
| 
 | |
|             if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
 | |
|                 /* Get second scale factor */
 | |
|                 scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
 | |
|                 s->scale_factor[j][k][1] = scale_table[scale_sum];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Joint subband scale factor codebook select */
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         /* Transmitted only if joint subband coding enabled */
 | |
|         if (s->joint_intensity[j] > 0)
 | |
|             s->joint_huff[j] = get_bits(&s->gb, 3);
 | |
|     }
 | |
| 
 | |
|     /* Scale factors for joint subband coding */
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         int source_channel;
 | |
| 
 | |
|         /* Transmitted only if joint subband coding enabled */
 | |
|         if (s->joint_intensity[j] > 0) {
 | |
|             int scale = 0;
 | |
|             source_channel = s->joint_intensity[j] - 1;
 | |
| 
 | |
|             /* When huffman coded, only the difference is encoded
 | |
|              * (is this valid as well for joint scales ???) */
 | |
| 
 | |
|             for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
 | |
|                 scale = get_scale(&s->gb, s->joint_huff[j], 0);
 | |
|                 scale += 64;    /* bias */
 | |
|                 s->joint_scale_factor[j][k] = scale;    /*joint_scale_table[scale]; */
 | |
|             }
 | |
| 
 | |
|             if (!s->debug_flag & 0x02) {
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                        "Joint stereo coding not supported\n");
 | |
|                 s->debug_flag |= 0x02;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Stereo downmix coefficients */
 | |
|     if (s->prim_channels > 2) {
 | |
|         if(s->downmix) {
 | |
|             for (j = 0; j < s->prim_channels; j++) {
 | |
|                 s->downmix_coef[j][0] = get_bits(&s->gb, 7);
 | |
|                 s->downmix_coef[j][1] = get_bits(&s->gb, 7);
 | |
|             }
 | |
|         } else {
 | |
|             int am = s->amode & DCA_CHANNEL_MASK;
 | |
|             for (j = 0; j < s->prim_channels; j++) {
 | |
|                 s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
 | |
|                 s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Dynamic range coefficient */
 | |
|     if (s->dynrange)
 | |
|         s->dynrange_coef = get_bits(&s->gb, 8);
 | |
| 
 | |
|     /* Side information CRC check word */
 | |
|     if (s->crc_present) {
 | |
|         get_bits(&s->gb, 16);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Primary audio data arrays
 | |
|      */
 | |
| 
 | |
|     /* VQ encoded high frequency subbands */
 | |
|     for (j = 0; j < s->prim_channels; j++)
 | |
|         for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
 | |
|             /* 1 vector -> 32 samples */
 | |
|             s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
 | |
| 
 | |
|     /* Low frequency effect data */
 | |
|     if (s->lfe) {
 | |
|         /* LFE samples */
 | |
|         int lfe_samples = 2 * s->lfe * s->subsubframes;
 | |
|         float lfe_scale;
 | |
| 
 | |
|         for (j = lfe_samples; j < lfe_samples * 2; j++) {
 | |
|             /* Signed 8 bits int */
 | |
|             s->lfe_data[j] = get_sbits(&s->gb, 8);
 | |
|         }
 | |
| 
 | |
|         /* Scale factor index */
 | |
|         s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 8)];
 | |
| 
 | |
|         /* Quantization step size * scale factor */
 | |
|         lfe_scale = 0.035 * s->lfe_scale_factor;
 | |
| 
 | |
|         for (j = lfe_samples; j < lfe_samples * 2; j++)
 | |
|             s->lfe_data[j] *= lfe_scale;
 | |
|     }
 | |
| 
 | |
| #ifdef TRACE
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n", s->subsubframes);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
 | |
|            s->partial_samples);
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
 | |
|         for (k = 0; k < s->subband_activity[j]; k++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         for (k = 0; k < s->subband_activity[j]; k++)
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                        "prediction coefs: %f, %f, %f, %f\n",
 | |
|                        (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
 | |
|                        (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
 | |
|                        (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
 | |
|                        (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
 | |
|     }
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
 | |
|         for (k = 0; k < s->vq_start_subband[j]; k++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
 | |
|         for (k = 0; k < s->subband_activity[j]; k++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
 | |
|         for (k = 0; k < s->subband_activity[j]; k++) {
 | |
|             if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
 | |
|             if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
 | |
|         }
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
|     for (j = 0; j < s->prim_channels; j++) {
 | |
|         if (s->joint_intensity[j] > 0) {
 | |
|             int source_channel = s->joint_intensity[j] - 1;
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
 | |
|             for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|         }
 | |
|     }
 | |
|     if (s->prim_channels > 2 && s->downmix) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
 | |
|         for (j = 0; j < s->prim_channels; j++) {
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "Channel 0,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][0]]);
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "Channel 1,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][1]]);
 | |
|         }
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
|     for (j = 0; j < s->prim_channels; j++)
 | |
|         for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
 | |
|     if(s->lfe){
 | |
|         int lfe_samples = 2 * s->lfe * s->subsubframes;
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
 | |
|         for (j = lfe_samples; j < lfe_samples * 2; j++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void qmf_32_subbands(DCAContext * s, int chans,
 | |
|                             float samples_in[32][8], float *samples_out,
 | |
|                             float scale, float bias)
 | |
| {
 | |
|     const float *prCoeff;
 | |
|     int i, j;
 | |
|     DECLARE_ALIGNED_16(float, raXin[32]);
 | |
| 
 | |
|     int hist_index= s->hist_index[chans];
 | |
|     float *subband_fir_hist2 = s->subband_fir_noidea[chans];
 | |
| 
 | |
|     int subindex;
 | |
| 
 | |
|     scale *= sqrt(1/8.0);
 | |
| 
 | |
|     /* Select filter */
 | |
|     if (!s->multirate_inter)    /* Non-perfect reconstruction */
 | |
|         prCoeff = fir_32bands_nonperfect;
 | |
|     else                        /* Perfect reconstruction */
 | |
|         prCoeff = fir_32bands_perfect;
 | |
| 
 | |
|     /* Reconstructed channel sample index */
 | |
|     for (subindex = 0; subindex < 8; subindex++) {
 | |
|         float *subband_fir_hist = s->subband_fir_hist[chans] + hist_index;
 | |
|         /* Load in one sample from each subband and clear inactive subbands */
 | |
|         for (i = 0; i < s->subband_activity[chans]; i++){
 | |
|             if((i-1)&2) raXin[i] = -samples_in[i][subindex];
 | |
|             else        raXin[i] =  samples_in[i][subindex];
 | |
|         }
 | |
|         for (; i < 32; i++)
 | |
|             raXin[i] = 0.0;
 | |
| 
 | |
|         ff_imdct_half(&s->imdct, subband_fir_hist, raXin);
 | |
| 
 | |
|         /* Multiply by filter coefficients */
 | |
|         for (i = 0; i < 16; i++){
 | |
|             float a= subband_fir_hist2[i   ];
 | |
|             float b= subband_fir_hist2[i+16];
 | |
|             float c= 0;
 | |
|             float d= 0;
 | |
|             for (j = 0; j < 512-hist_index; j += 64){
 | |
|                 a += prCoeff[i+j   ]*(-subband_fir_hist[15-i+j]);
 | |
|                 b += prCoeff[i+j+16]*( subband_fir_hist[   i+j]);
 | |
|                 c += prCoeff[i+j+32]*( subband_fir_hist[16+i+j]);
 | |
|                 d += prCoeff[i+j+48]*( subband_fir_hist[31-i+j]);
 | |
|             }
 | |
|             for (     ; j < 512; j += 64){
 | |
|                 a += prCoeff[i+j   ]*(-subband_fir_hist[15-i+j-512]);
 | |
|                 b += prCoeff[i+j+16]*( subband_fir_hist[   i+j-512]);
 | |
|                 c += prCoeff[i+j+32]*( subband_fir_hist[16+i+j-512]);
 | |
|                 d += prCoeff[i+j+48]*( subband_fir_hist[31-i+j-512]);
 | |
|             }
 | |
|             samples_out[i   ] = a * scale + bias;
 | |
|             samples_out[i+16] = b * scale + bias;
 | |
|             subband_fir_hist2[i   ] = c;
 | |
|             subband_fir_hist2[i+16] = d;
 | |
|         }
 | |
|         samples_out+= 32;
 | |
| 
 | |
|         hist_index = (hist_index-32)&511;
 | |
|     }
 | |
|     s->hist_index[chans]= hist_index;
 | |
| }
 | |
| 
 | |
| static void lfe_interpolation_fir(int decimation_select,
 | |
|                                   int num_deci_sample, float *samples_in,
 | |
|                                   float *samples_out, float scale,
 | |
|                                   float bias)
 | |
| {
 | |
|     /* samples_in: An array holding decimated samples.
 | |
|      *   Samples in current subframe starts from samples_in[0],
 | |
|      *   while samples_in[-1], samples_in[-2], ..., stores samples
 | |
|      *   from last subframe as history.
 | |
|      *
 | |
|      * samples_out: An array holding interpolated samples
 | |
|      */
 | |
| 
 | |
|     int decifactor, k, j;
 | |
|     const float *prCoeff;
 | |
| 
 | |
|     int interp_index = 0;       /* Index to the interpolated samples */
 | |
|     int deciindex;
 | |
| 
 | |
|     /* Select decimation filter */
 | |
|     if (decimation_select == 1) {
 | |
|         decifactor = 128;
 | |
|         prCoeff = lfe_fir_128;
 | |
|     } else {
 | |
|         decifactor = 64;
 | |
|         prCoeff = lfe_fir_64;
 | |
|     }
 | |
|     /* Interpolation */
 | |
|     for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
 | |
|         /* One decimated sample generates decifactor interpolated ones */
 | |
|         for (k = 0; k < decifactor; k++) {
 | |
|             float rTmp = 0.0;
 | |
|             //FIXME the coeffs are symetric, fix that
 | |
|             for (j = 0; j < 512 / decifactor; j++)
 | |
|                 rTmp += samples_in[deciindex - j] * prCoeff[k + j * decifactor];
 | |
|             samples_out[interp_index++] = (rTmp * scale) + bias;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* downmixing routines */
 | |
| #define MIX_REAR1(samples, si1, rs, coef) \
 | |
|      samples[i]     += samples[si1] * coef[rs][0]; \
 | |
|      samples[i+256] += samples[si1] * coef[rs][1];
 | |
| 
 | |
| #define MIX_REAR2(samples, si1, si2, rs, coef) \
 | |
|      samples[i]     += samples[si1] * coef[rs][0] + samples[si2] * coef[rs+1][0]; \
 | |
|      samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs+1][1];
 | |
| 
 | |
| #define MIX_FRONT3(samples, coef) \
 | |
|     t = samples[i]; \
 | |
|     samples[i]     = t * coef[0][0] + samples[i+256] * coef[1][0] + samples[i+512] * coef[2][0]; \
 | |
|     samples[i+256] = t * coef[0][1] + samples[i+256] * coef[1][1] + samples[i+512] * coef[2][1];
 | |
| 
 | |
| #define DOWNMIX_TO_STEREO(op1, op2) \
 | |
|     for(i = 0; i < 256; i++){ \
 | |
|         op1 \
 | |
|         op2 \
 | |
|     }
 | |
| 
 | |
| static void dca_downmix(float *samples, int srcfmt,
 | |
|                         int downmix_coef[DCA_PRIM_CHANNELS_MAX][2])
 | |
| {
 | |
|     int i;
 | |
|     float t;
 | |
|     float coef[DCA_PRIM_CHANNELS_MAX][2];
 | |
| 
 | |
|     for(i=0; i<DCA_PRIM_CHANNELS_MAX; i++) {
 | |
|         coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
 | |
|         coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
 | |
|     }
 | |
| 
 | |
|     switch (srcfmt) {
 | |
|     case DCA_MONO:
 | |
|     case DCA_CHANNEL:
 | |
|     case DCA_STEREO_TOTAL:
 | |
|     case DCA_STEREO_SUMDIFF:
 | |
|     case DCA_4F2R:
 | |
|         av_log(NULL, 0, "Not implemented!\n");
 | |
|         break;
 | |
|     case DCA_STEREO:
 | |
|         break;
 | |
|     case DCA_3F:
 | |
|         DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),);
 | |
|         break;
 | |
|     case DCA_2F1R:
 | |
|         DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + 512, 2, coef),);
 | |
|         break;
 | |
|     case DCA_3F1R:
 | |
|         DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
 | |
|                           MIX_REAR1(samples, i + 768, 3, coef));
 | |
|         break;
 | |
|     case DCA_2F2R:
 | |
|         DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + 512, i + 768, 2, coef),);
 | |
|         break;
 | |
|     case DCA_3F2R:
 | |
|         DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
 | |
|                           MIX_REAR2(samples, i + 768, i + 1024, 3, coef));
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Very compact version of the block code decoder that does not use table
 | |
|  * look-up but is slightly slower */
 | |
| static int decode_blockcode(int code, int levels, int *values)
 | |
| {
 | |
|     int i;
 | |
|     int offset = (levels - 1) >> 1;
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         values[i] = (code % levels) - offset;
 | |
|         code /= levels;
 | |
|     }
 | |
| 
 | |
|     if (code == 0)
 | |
|         return 0;
 | |
|     else {
 | |
|         av_log(NULL, AV_LOG_ERROR, "ERROR: block code look-up failed\n");
 | |
|         return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
 | |
| static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
 | |
| 
 | |
| static int dca_subsubframe(DCAContext * s)
 | |
| {
 | |
|     int k, l;
 | |
|     int subsubframe = s->current_subsubframe;
 | |
| 
 | |
|     const float *quant_step_table;
 | |
| 
 | |
|     /* FIXME */
 | |
|     float subband_samples[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
 | |
| 
 | |
|     /*
 | |
|      * Audio data
 | |
|      */
 | |
| 
 | |
|     /* Select quantization step size table */
 | |
|     if (s->bit_rate_index == 0x1f)
 | |
|         quant_step_table = lossless_quant_d;
 | |
|     else
 | |
|         quant_step_table = lossy_quant_d;
 | |
| 
 | |
|     for (k = 0; k < s->prim_channels; k++) {
 | |
|         for (l = 0; l < s->vq_start_subband[k]; l++) {
 | |
|             int m;
 | |
| 
 | |
|             /* Select the mid-tread linear quantizer */
 | |
|             int abits = s->bitalloc[k][l];
 | |
| 
 | |
|             float quant_step_size = quant_step_table[abits];
 | |
|             float rscale;
 | |
| 
 | |
|             /*
 | |
|              * Determine quantization index code book and its type
 | |
|              */
 | |
| 
 | |
|             /* Select quantization index code book */
 | |
|             int sel = s->quant_index_huffman[k][abits];
 | |
| 
 | |
|             /*
 | |
|              * Extract bits from the bit stream
 | |
|              */
 | |
|             if(!abits){
 | |
|                 memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
 | |
|             }else if(abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table){
 | |
|                 if(abits <= 7){
 | |
|                     /* Block code */
 | |
|                     int block_code1, block_code2, size, levels;
 | |
|                     int block[8];
 | |
| 
 | |
|                     size = abits_sizes[abits-1];
 | |
|                     levels = abits_levels[abits-1];
 | |
| 
 | |
|                     block_code1 = get_bits(&s->gb, size);
 | |
|                     /* FIXME Should test return value */
 | |
|                     decode_blockcode(block_code1, levels, block);
 | |
|                     block_code2 = get_bits(&s->gb, size);
 | |
|                     decode_blockcode(block_code2, levels, &block[4]);
 | |
|                     for (m = 0; m < 8; m++)
 | |
|                         subband_samples[k][l][m] = block[m];
 | |
|                 }else{
 | |
|                     /* no coding */
 | |
|                     for (m = 0; m < 8; m++)
 | |
|                         subband_samples[k][l][m] = get_sbits(&s->gb, abits - 3);
 | |
|                 }
 | |
|             }else{
 | |
|                 /* Huffman coded */
 | |
|                 for (m = 0; m < 8; m++)
 | |
|                     subband_samples[k][l][m] = get_bitalloc(&s->gb, &dca_smpl_bitalloc[abits], sel);
 | |
|             }
 | |
| 
 | |
|             /* Deal with transients */
 | |
|             if (s->transition_mode[k][l] &&
 | |
|                 subsubframe >= s->transition_mode[k][l])
 | |
|                 rscale = quant_step_size * s->scale_factor[k][l][1];
 | |
|             else
 | |
|                 rscale = quant_step_size * s->scale_factor[k][l][0];
 | |
| 
 | |
|             rscale *= s->scalefactor_adj[k][sel];
 | |
| 
 | |
|             for (m = 0; m < 8; m++)
 | |
|                 subband_samples[k][l][m] *= rscale;
 | |
| 
 | |
|             /*
 | |
|              * Inverse ADPCM if in prediction mode
 | |
|              */
 | |
|             if (s->prediction_mode[k][l]) {
 | |
|                 int n;
 | |
|                 for (m = 0; m < 8; m++) {
 | |
|                     for (n = 1; n <= 4; n++)
 | |
|                         if (m >= n)
 | |
|                             subband_samples[k][l][m] +=
 | |
|                                 (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
 | |
|                                  subband_samples[k][l][m - n] / 8192);
 | |
|                         else if (s->predictor_history)
 | |
|                             subband_samples[k][l][m] +=
 | |
|                                 (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
 | |
|                                  s->subband_samples_hist[k][l][m - n +
 | |
|                                                                4] / 8192);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Decode VQ encoded high frequencies
 | |
|          */
 | |
|         for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
 | |
|             /* 1 vector -> 32 samples but we only need the 8 samples
 | |
|              * for this subsubframe. */
 | |
|             int m;
 | |
| 
 | |
|             if (!s->debug_flag & 0x01) {
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG, "Stream with high frequencies VQ coding\n");
 | |
|                 s->debug_flag |= 0x01;
 | |
|             }
 | |
| 
 | |
|             for (m = 0; m < 8; m++) {
 | |
|                 subband_samples[k][l][m] =
 | |
|                     high_freq_vq[s->high_freq_vq[k][l]][subsubframe * 8 +
 | |
|                                                         m]
 | |
|                     * (float) s->scale_factor[k][l][0] / 16.0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check for DSYNC after subsubframe */
 | |
|     if (s->aspf || subsubframe == s->subsubframes - 1) {
 | |
|         if (0xFFFF == get_bits(&s->gb, 16)) {   /* 0xFFFF */
 | |
| #ifdef TRACE
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
 | |
| #endif
 | |
|         } else {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Backup predictor history for adpcm */
 | |
|     for (k = 0; k < s->prim_channels; k++)
 | |
|         for (l = 0; l < s->vq_start_subband[k]; l++)
 | |
|             memcpy(s->subband_samples_hist[k][l], &subband_samples[k][l][4],
 | |
|                         4 * sizeof(subband_samples[0][0][0]));
 | |
| 
 | |
|     /* 32 subbands QMF */
 | |
|     for (k = 0; k < s->prim_channels; k++) {
 | |
| /*        static float pcm_to_double[8] =
 | |
|             {32768.0, 32768.0, 524288.0, 524288.0, 0, 8388608.0, 8388608.0};*/
 | |
|          qmf_32_subbands(s, k, subband_samples[k], &s->samples[256 * s->channel_order_tab[k]],
 | |
|                             M_SQRT1_2*s->scale_bias /*pcm_to_double[s->source_pcm_res] */ ,
 | |
|                             s->add_bias );
 | |
|     }
 | |
| 
 | |
|     /* Down mixing */
 | |
| 
 | |
|     if (s->prim_channels > dca_channels[s->output & DCA_CHANNEL_MASK]) {
 | |
|         dca_downmix(s->samples, s->amode, s->downmix_coef);
 | |
|     }
 | |
| 
 | |
|     /* Generate LFE samples for this subsubframe FIXME!!! */
 | |
|     if (s->output & DCA_LFE) {
 | |
|         int lfe_samples = 2 * s->lfe * s->subsubframes;
 | |
| 
 | |
|         lfe_interpolation_fir(s->lfe, 2 * s->lfe,
 | |
|                               s->lfe_data + lfe_samples +
 | |
|                               2 * s->lfe * subsubframe,
 | |
|                               &s->samples[256 * dca_lfe_index[s->amode]],
 | |
|                               (1.0/256.0)*s->scale_bias,  s->add_bias);
 | |
|         /* Outputs 20bits pcm samples */
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int dca_subframe_footer(DCAContext * s)
 | |
| {
 | |
|     int aux_data_count = 0, i;
 | |
|     int lfe_samples;
 | |
| 
 | |
|     /*
 | |
|      * Unpack optional information
 | |
|      */
 | |
| 
 | |
|     if (s->timestamp)
 | |
|         get_bits(&s->gb, 32);
 | |
| 
 | |
|     if (s->aux_data)
 | |
|         aux_data_count = get_bits(&s->gb, 6);
 | |
| 
 | |
|     for (i = 0; i < aux_data_count; i++)
 | |
|         get_bits(&s->gb, 8);
 | |
| 
 | |
|     if (s->crc_present && (s->downmix || s->dynrange))
 | |
|         get_bits(&s->gb, 16);
 | |
| 
 | |
|     lfe_samples = 2 * s->lfe * s->subsubframes;
 | |
|     for (i = 0; i < lfe_samples; i++) {
 | |
|         s->lfe_data[i] = s->lfe_data[i + lfe_samples];
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a dca frame block
 | |
|  *
 | |
|  * @param s     pointer to the DCAContext
 | |
|  */
 | |
| 
 | |
| static int dca_decode_block(DCAContext * s)
 | |
| {
 | |
| 
 | |
|     /* Sanity check */
 | |
|     if (s->current_subframe >= s->subframes) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
 | |
|                s->current_subframe, s->subframes);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!s->current_subsubframe) {
 | |
| #ifdef TRACE
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
 | |
| #endif
 | |
|         /* Read subframe header */
 | |
|         if (dca_subframe_header(s))
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     /* Read subsubframe */
 | |
| #ifdef TRACE
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
 | |
| #endif
 | |
|     if (dca_subsubframe(s))
 | |
|         return -1;
 | |
| 
 | |
|     /* Update state */
 | |
|     s->current_subsubframe++;
 | |
|     if (s->current_subsubframe >= s->subsubframes) {
 | |
|         s->current_subsubframe = 0;
 | |
|         s->current_subframe++;
 | |
|     }
 | |
|     if (s->current_subframe >= s->subframes) {
 | |
| #ifdef TRACE
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
 | |
| #endif
 | |
|         /* Read subframe footer */
 | |
|         if (dca_subframe_footer(s))
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Convert bitstream to one representation based on sync marker
 | |
|  */
 | |
| static int dca_convert_bitstream(const uint8_t * src, int src_size, uint8_t * dst,
 | |
|                           int max_size)
 | |
| {
 | |
|     uint32_t mrk;
 | |
|     int i, tmp;
 | |
|     const uint16_t *ssrc = (const uint16_t *) src;
 | |
|     uint16_t *sdst = (uint16_t *) dst;
 | |
|     PutBitContext pb;
 | |
| 
 | |
|     if((unsigned)src_size > (unsigned)max_size) {
 | |
| //        av_log(NULL, AV_LOG_ERROR, "Input frame size larger then DCA_MAX_FRAME_SIZE!\n");
 | |
| //        return -1;
 | |
|         src_size = max_size;
 | |
|     }
 | |
| 
 | |
|     mrk = AV_RB32(src);
 | |
|     switch (mrk) {
 | |
|     case DCA_MARKER_RAW_BE:
 | |
|         memcpy(dst, src, src_size);
 | |
|         return src_size;
 | |
|     case DCA_MARKER_RAW_LE:
 | |
|         for (i = 0; i < (src_size + 1) >> 1; i++)
 | |
|             *sdst++ = bswap_16(*ssrc++);
 | |
|         return src_size;
 | |
|     case DCA_MARKER_14B_BE:
 | |
|     case DCA_MARKER_14B_LE:
 | |
|         init_put_bits(&pb, dst, max_size);
 | |
|         for (i = 0; i < (src_size + 1) >> 1; i++, src += 2) {
 | |
|             tmp = ((mrk == DCA_MARKER_14B_BE) ? AV_RB16(src) : AV_RL16(src)) & 0x3FFF;
 | |
|             put_bits(&pb, 14, tmp);
 | |
|         }
 | |
|         flush_put_bits(&pb);
 | |
|         return (put_bits_count(&pb) + 7) >> 3;
 | |
|     default:
 | |
|         return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Main frame decoding function
 | |
|  * FIXME add arguments
 | |
|  */
 | |
| static int dca_decode_frame(AVCodecContext * avctx,
 | |
|                             void *data, int *data_size,
 | |
|                             const uint8_t * buf, int buf_size)
 | |
| {
 | |
| 
 | |
|     int i;
 | |
|     int16_t *samples = data;
 | |
|     DCAContext *s = avctx->priv_data;
 | |
|     int channels;
 | |
| 
 | |
| 
 | |
|     s->dca_buffer_size = dca_convert_bitstream(buf, buf_size, s->dca_buffer, DCA_MAX_FRAME_SIZE);
 | |
|     if (s->dca_buffer_size == -1) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
 | |
|     if (dca_parse_frame_header(s) < 0) {
 | |
|         //seems like the frame is corrupt, try with the next one
 | |
|         *data_size=0;
 | |
|         return buf_size;
 | |
|     }
 | |
|     //set AVCodec values with parsed data
 | |
|     avctx->sample_rate = s->sample_rate;
 | |
|     avctx->bit_rate = s->bit_rate;
 | |
| 
 | |
|     channels = s->prim_channels + !!s->lfe;
 | |
| 
 | |
|     if (s->amode<16) {
 | |
|         avctx->channel_layout = dca_core_channel_layout[s->amode];
 | |
| 
 | |
|         if (s->lfe) {
 | |
|             avctx->channel_layout |= CH_LOW_FREQUENCY;
 | |
|             s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
 | |
|         } else
 | |
|             s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
 | |
| 
 | |
|         if(avctx->request_channels == 2 && s->prim_channels > 2) {
 | |
|             channels = 2;
 | |
|             s->output = DCA_STEREO;
 | |
|             avctx->channel_layout = CH_LAYOUT_STEREO;
 | |
|         }
 | |
|     } else {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n",s->amode);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* There is nothing that prevents a dts frame to change channel configuration
 | |
|        but FFmpeg doesn't support that so only set the channels if it is previously
 | |
|        unset. Ideally during the first probe for channels the crc should be checked
 | |
|        and only set avctx->channels when the crc is ok. Right now the decoder could
 | |
|        set the channels based on a broken first frame.*/
 | |
|     if (!avctx->channels)
 | |
|         avctx->channels = channels;
 | |
| 
 | |
|     if(*data_size < (s->sample_blocks / 8) * 256 * sizeof(int16_t) * channels)
 | |
|         return -1;
 | |
|     *data_size = 256 / 8 * s->sample_blocks * sizeof(int16_t) * channels;
 | |
|     for (i = 0; i < (s->sample_blocks / 8); i++) {
 | |
|         dca_decode_block(s);
 | |
|         s->dsp.float_to_int16_interleave(samples, s->samples_chanptr, 256, channels);
 | |
|         samples += 256 * channels;
 | |
|     }
 | |
| 
 | |
|     return buf_size;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * DCA initialization
 | |
|  *
 | |
|  * @param avctx     pointer to the AVCodecContext
 | |
|  */
 | |
| 
 | |
| static av_cold int dca_decode_init(AVCodecContext * avctx)
 | |
| {
 | |
|     DCAContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
|     dca_init_vlcs();
 | |
| 
 | |
|     dsputil_init(&s->dsp, avctx);
 | |
|     ff_mdct_init(&s->imdct, 6, 1);
 | |
| 
 | |
|     for(i = 0; i < 6; i++)
 | |
|         s->samples_chanptr[i] = s->samples + i * 256;
 | |
|     avctx->sample_fmt = SAMPLE_FMT_S16;
 | |
| 
 | |
|     if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
 | |
|         s->add_bias = 385.0f;
 | |
|         s->scale_bias = 1.0 / 32768.0;
 | |
|     } else {
 | |
|         s->add_bias = 0.0f;
 | |
|         s->scale_bias = 1.0;
 | |
| 
 | |
|         /* allow downmixing to stereo */
 | |
|         if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
 | |
|                 avctx->request_channels == 2) {
 | |
|             avctx->channels = avctx->request_channels;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int dca_decode_end(AVCodecContext * avctx)
 | |
| {
 | |
|     DCAContext *s = avctx->priv_data;
 | |
|     ff_mdct_end(&s->imdct);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec dca_decoder = {
 | |
|     .name = "dca",
 | |
|     .type = CODEC_TYPE_AUDIO,
 | |
|     .id = CODEC_ID_DTS,
 | |
|     .priv_data_size = sizeof(DCAContext),
 | |
|     .init = dca_decode_init,
 | |
|     .decode = dca_decode_frame,
 | |
|     .close = dca_decode_end,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
 | |
| };
 | 
