mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	 dbbec0c2f2
			
		
	
	dbbec0c2f2
	
	
	
		
			
			to ff_log_missing_feature. Originally committed as revision 16037 to svn://svn.ffmpeg.org/ffmpeg/trunk
		
			
				
	
	
		
			1371 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1371 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AC-3 Audio Decoder
 | |
|  * This code was developed as part of Google Summer of Code 2006.
 | |
|  * E-AC-3 support was added as part of Google Summer of Code 2007.
 | |
|  *
 | |
|  * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
 | |
|  * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
 | |
|  * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
 | |
|  *
 | |
|  * Portions of this code are derived from liba52
 | |
|  * http://liba52.sourceforge.net
 | |
|  * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
 | |
|  * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stddef.h>
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "libavutil/crc.h"
 | |
| #include "internal.h"
 | |
| #include "ac3_parser.h"
 | |
| #include "ac3dec.h"
 | |
| #include "ac3dec_data.h"
 | |
| 
 | |
| /** Large enough for maximum possible frame size when the specification limit is ignored */
 | |
| #define AC3_FRAME_BUFFER_SIZE 32768
 | |
| 
 | |
| /**
 | |
|  * table for ungrouping 3 values in 7 bits.
 | |
|  * used for exponents and bap=2 mantissas
 | |
|  */
 | |
| static uint8_t ungroup_3_in_7_bits_tab[128][3];
 | |
| 
 | |
| 
 | |
| /** tables for ungrouping mantissas */
 | |
| static int b1_mantissas[32][3];
 | |
| static int b2_mantissas[128][3];
 | |
| static int b3_mantissas[8];
 | |
| static int b4_mantissas[128][2];
 | |
| static int b5_mantissas[16];
 | |
| 
 | |
| /**
 | |
|  * Quantization table: levels for symmetric. bits for asymmetric.
 | |
|  * reference: Table 7.18 Mapping of bap to Quantizer
 | |
|  */
 | |
| static const uint8_t quantization_tab[16] = {
 | |
|     0, 3, 5, 7, 11, 15,
 | |
|     5, 6, 7, 8, 9, 10, 11, 12, 14, 16
 | |
| };
 | |
| 
 | |
| /** dynamic range table. converts codes to scale factors. */
 | |
| static float dynamic_range_tab[256];
 | |
| 
 | |
| /** Adjustments in dB gain */
 | |
| #define LEVEL_PLUS_3DB          1.4142135623730950
 | |
| #define LEVEL_PLUS_1POINT5DB    1.1892071150027209
 | |
| #define LEVEL_MINUS_1POINT5DB   0.8408964152537145
 | |
| #define LEVEL_MINUS_3DB         0.7071067811865476
 | |
| #define LEVEL_MINUS_4POINT5DB   0.5946035575013605
 | |
| #define LEVEL_MINUS_6DB         0.5000000000000000
 | |
| #define LEVEL_MINUS_9DB         0.3535533905932738
 | |
| #define LEVEL_ZERO              0.0000000000000000
 | |
| #define LEVEL_ONE               1.0000000000000000
 | |
| 
 | |
| static const float gain_levels[9] = {
 | |
|     LEVEL_PLUS_3DB,
 | |
|     LEVEL_PLUS_1POINT5DB,
 | |
|     LEVEL_ONE,
 | |
|     LEVEL_MINUS_1POINT5DB,
 | |
|     LEVEL_MINUS_3DB,
 | |
|     LEVEL_MINUS_4POINT5DB,
 | |
|     LEVEL_MINUS_6DB,
 | |
|     LEVEL_ZERO,
 | |
|     LEVEL_MINUS_9DB
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Table for center mix levels
 | |
|  * reference: Section 5.4.2.4 cmixlev
 | |
|  */
 | |
| static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
 | |
| 
 | |
| /**
 | |
|  * Table for surround mix levels
 | |
|  * reference: Section 5.4.2.5 surmixlev
 | |
|  */
 | |
| static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
 | |
| 
 | |
| /**
 | |
|  * Table for default stereo downmixing coefficients
 | |
|  * reference: Section 7.8.2 Downmixing Into Two Channels
 | |
|  */
 | |
| static const uint8_t ac3_default_coeffs[8][5][2] = {
 | |
|     { { 2, 7 }, { 7, 2 },                               },
 | |
|     { { 4, 4 },                                         },
 | |
|     { { 2, 7 }, { 7, 2 },                               },
 | |
|     { { 2, 7 }, { 5, 5 }, { 7, 2 },                     },
 | |
|     { { 2, 7 }, { 7, 2 }, { 6, 6 },                     },
 | |
|     { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 },           },
 | |
|     { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 },           },
 | |
|     { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Symmetrical Dequantization
 | |
|  * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
 | |
|  *            Tables 7.19 to 7.23
 | |
|  */
 | |
| static inline int
 | |
| symmetric_dequant(int code, int levels)
 | |
| {
 | |
|     return ((code - (levels >> 1)) << 24) / levels;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize tables at runtime.
 | |
|  */
 | |
| static av_cold void ac3_tables_init(void)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     /* generate table for ungrouping 3 values in 7 bits
 | |
|        reference: Section 7.1.3 Exponent Decoding */
 | |
|     for(i=0; i<128; i++) {
 | |
|         ungroup_3_in_7_bits_tab[i][0] =  i / 25;
 | |
|         ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
 | |
|         ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
 | |
|     }
 | |
| 
 | |
|     /* generate grouped mantissa tables
 | |
|        reference: Section 7.3.5 Ungrouping of Mantissas */
 | |
|     for(i=0; i<32; i++) {
 | |
|         /* bap=1 mantissas */
 | |
|         b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
 | |
|         b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
 | |
|         b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
 | |
|     }
 | |
|     for(i=0; i<128; i++) {
 | |
|         /* bap=2 mantissas */
 | |
|         b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
 | |
|         b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
 | |
|         b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
 | |
| 
 | |
|         /* bap=4 mantissas */
 | |
|         b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
 | |
|         b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
 | |
|     }
 | |
|     /* generate ungrouped mantissa tables
 | |
|        reference: Tables 7.21 and 7.23 */
 | |
|     for(i=0; i<7; i++) {
 | |
|         /* bap=3 mantissas */
 | |
|         b3_mantissas[i] = symmetric_dequant(i, 7);
 | |
|     }
 | |
|     for(i=0; i<15; i++) {
 | |
|         /* bap=5 mantissas */
 | |
|         b5_mantissas[i] = symmetric_dequant(i, 15);
 | |
|     }
 | |
| 
 | |
|     /* generate dynamic range table
 | |
|        reference: Section 7.7.1 Dynamic Range Control */
 | |
|     for(i=0; i<256; i++) {
 | |
|         int v = (i >> 5) - ((i >> 7) << 3) - 5;
 | |
|         dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * AVCodec initialization
 | |
|  */
 | |
| static av_cold int ac3_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     AC3DecodeContext *s = avctx->priv_data;
 | |
|     s->avctx = avctx;
 | |
| 
 | |
|     ac3_common_init();
 | |
|     ac3_tables_init();
 | |
|     ff_mdct_init(&s->imdct_256, 8, 1);
 | |
|     ff_mdct_init(&s->imdct_512, 9, 1);
 | |
|     ff_kbd_window_init(s->window, 5.0, 256);
 | |
|     dsputil_init(&s->dsp, avctx);
 | |
|     av_lfg_init(&s->dith_state, 0);
 | |
| 
 | |
|     /* set bias values for float to int16 conversion */
 | |
|     if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
 | |
|         s->add_bias = 385.0f;
 | |
|         s->mul_bias = 1.0f;
 | |
|     } else {
 | |
|         s->add_bias = 0.0f;
 | |
|         s->mul_bias = 32767.0f;
 | |
|     }
 | |
| 
 | |
|     /* allow downmixing to stereo or mono */
 | |
|     if (avctx->channels > 0 && avctx->request_channels > 0 &&
 | |
|             avctx->request_channels < avctx->channels &&
 | |
|             avctx->request_channels <= 2) {
 | |
|         avctx->channels = avctx->request_channels;
 | |
|     }
 | |
|     s->downmixed = 1;
 | |
| 
 | |
|     /* allocate context input buffer */
 | |
|     if (avctx->error_recognition >= FF_ER_CAREFUL) {
 | |
|         s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
 | |
|         if (!s->input_buffer)
 | |
|             return AVERROR_NOMEM;
 | |
|     }
 | |
| 
 | |
|     avctx->sample_fmt = SAMPLE_FMT_S16;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
 | |
|  * GetBitContext within AC3DecodeContext must point to
 | |
|  * the start of the synchronized AC-3 bitstream.
 | |
|  */
 | |
| static int ac3_parse_header(AC3DecodeContext *s)
 | |
| {
 | |
|     GetBitContext *gbc = &s->gbc;
 | |
|     int i;
 | |
| 
 | |
|     /* read the rest of the bsi. read twice for dual mono mode. */
 | |
|     i = !(s->channel_mode);
 | |
|     do {
 | |
|         skip_bits(gbc, 5); // skip dialog normalization
 | |
|         if (get_bits1(gbc))
 | |
|             skip_bits(gbc, 8); //skip compression
 | |
|         if (get_bits1(gbc))
 | |
|             skip_bits(gbc, 8); //skip language code
 | |
|         if (get_bits1(gbc))
 | |
|             skip_bits(gbc, 7); //skip audio production information
 | |
|     } while (i--);
 | |
| 
 | |
|     skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
 | |
| 
 | |
|     /* skip the timecodes (or extra bitstream information for Alternate Syntax)
 | |
|        TODO: read & use the xbsi1 downmix levels */
 | |
|     if (get_bits1(gbc))
 | |
|         skip_bits(gbc, 14); //skip timecode1 / xbsi1
 | |
|     if (get_bits1(gbc))
 | |
|         skip_bits(gbc, 14); //skip timecode2 / xbsi2
 | |
| 
 | |
|     /* skip additional bitstream info */
 | |
|     if (get_bits1(gbc)) {
 | |
|         i = get_bits(gbc, 6);
 | |
|         do {
 | |
|             skip_bits(gbc, 8);
 | |
|         } while(i--);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Common function to parse AC-3 or E-AC-3 frame header
 | |
|  */
 | |
| static int parse_frame_header(AC3DecodeContext *s)
 | |
| {
 | |
|     AC3HeaderInfo hdr;
 | |
|     int err;
 | |
| 
 | |
|     err = ff_ac3_parse_header(&s->gbc, &hdr);
 | |
|     if(err)
 | |
|         return err;
 | |
| 
 | |
|     /* get decoding parameters from header info */
 | |
|     s->bit_alloc_params.sr_code     = hdr.sr_code;
 | |
|     s->channel_mode                 = hdr.channel_mode;
 | |
|     s->lfe_on                       = hdr.lfe_on;
 | |
|     s->bit_alloc_params.sr_shift    = hdr.sr_shift;
 | |
|     s->sample_rate                  = hdr.sample_rate;
 | |
|     s->bit_rate                     = hdr.bit_rate;
 | |
|     s->channels                     = hdr.channels;
 | |
|     s->fbw_channels                 = s->channels - s->lfe_on;
 | |
|     s->lfe_ch                       = s->fbw_channels + 1;
 | |
|     s->frame_size                   = hdr.frame_size;
 | |
|     s->center_mix_level             = hdr.center_mix_level;
 | |
|     s->surround_mix_level           = hdr.surround_mix_level;
 | |
|     s->num_blocks                   = hdr.num_blocks;
 | |
|     s->frame_type                   = hdr.frame_type;
 | |
|     s->substreamid                  = hdr.substreamid;
 | |
| 
 | |
|     if(s->lfe_on) {
 | |
|         s->start_freq[s->lfe_ch] = 0;
 | |
|         s->end_freq[s->lfe_ch] = 7;
 | |
|         s->num_exp_groups[s->lfe_ch] = 2;
 | |
|         s->channel_in_cpl[s->lfe_ch] = 0;
 | |
|     }
 | |
| 
 | |
|     if (hdr.bitstream_id <= 10) {
 | |
|         s->eac3                  = 0;
 | |
|         s->snr_offset_strategy   = 2;
 | |
|         s->block_switch_syntax   = 1;
 | |
|         s->dither_flag_syntax    = 1;
 | |
|         s->bit_allocation_syntax = 1;
 | |
|         s->fast_gain_syntax      = 0;
 | |
|         s->first_cpl_leak        = 0;
 | |
|         s->dba_syntax            = 1;
 | |
|         s->skip_syntax           = 1;
 | |
|         memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
 | |
|         return ac3_parse_header(s);
 | |
|     } else {
 | |
|         s->eac3 = 1;
 | |
|         return ff_eac3_parse_header(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set stereo downmixing coefficients based on frame header info.
 | |
|  * reference: Section 7.8.2 Downmixing Into Two Channels
 | |
|  */
 | |
| static void set_downmix_coeffs(AC3DecodeContext *s)
 | |
| {
 | |
|     int i;
 | |
|     float cmix = gain_levels[center_levels[s->center_mix_level]];
 | |
|     float smix = gain_levels[surround_levels[s->surround_mix_level]];
 | |
|     float norm0, norm1;
 | |
| 
 | |
|     for(i=0; i<s->fbw_channels; i++) {
 | |
|         s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
 | |
|         s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
 | |
|     }
 | |
|     if(s->channel_mode > 1 && s->channel_mode & 1) {
 | |
|         s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
 | |
|     }
 | |
|     if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
 | |
|         int nf = s->channel_mode - 2;
 | |
|         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
 | |
|     }
 | |
|     if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
 | |
|         int nf = s->channel_mode - 4;
 | |
|         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
 | |
|     }
 | |
| 
 | |
|     /* renormalize */
 | |
|     norm0 = norm1 = 0.0;
 | |
|     for(i=0; i<s->fbw_channels; i++) {
 | |
|         norm0 += s->downmix_coeffs[i][0];
 | |
|         norm1 += s->downmix_coeffs[i][1];
 | |
|     }
 | |
|     norm0 = 1.0f / norm0;
 | |
|     norm1 = 1.0f / norm1;
 | |
|     for(i=0; i<s->fbw_channels; i++) {
 | |
|         s->downmix_coeffs[i][0] *= norm0;
 | |
|         s->downmix_coeffs[i][1] *= norm1;
 | |
|     }
 | |
| 
 | |
|     if(s->output_mode == AC3_CHMODE_MONO) {
 | |
|         for(i=0; i<s->fbw_channels; i++)
 | |
|             s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode the grouped exponents according to exponent strategy.
 | |
|  * reference: Section 7.1.3 Exponent Decoding
 | |
|  */
 | |
| static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
 | |
|                             uint8_t absexp, int8_t *dexps)
 | |
| {
 | |
|     int i, j, grp, group_size;
 | |
|     int dexp[256];
 | |
|     int expacc, prevexp;
 | |
| 
 | |
|     /* unpack groups */
 | |
|     group_size = exp_strategy + (exp_strategy == EXP_D45);
 | |
|     for(grp=0,i=0; grp<ngrps; grp++) {
 | |
|         expacc = get_bits(gbc, 7);
 | |
|         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
 | |
|         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
 | |
|         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
 | |
|     }
 | |
| 
 | |
|     /* convert to absolute exps and expand groups */
 | |
|     prevexp = absexp;
 | |
|     for(i=0,j=0; i<ngrps*3; i++) {
 | |
|         prevexp += dexp[i] - 2;
 | |
|         if (prevexp > 24U)
 | |
|             return -1;
 | |
|         switch (group_size) {
 | |
|             case 4: dexps[j++] = prevexp;
 | |
|                     dexps[j++] = prevexp;
 | |
|             case 2: dexps[j++] = prevexp;
 | |
|             case 1: dexps[j++] = prevexp;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generate transform coefficients for each coupled channel in the coupling
 | |
|  * range using the coupling coefficients and coupling coordinates.
 | |
|  * reference: Section 7.4.3 Coupling Coordinate Format
 | |
|  */
 | |
| static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
 | |
| {
 | |
|     int i, j, ch, bnd, subbnd;
 | |
| 
 | |
|     subbnd = -1;
 | |
|     i = s->start_freq[CPL_CH];
 | |
|     for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
 | |
|         do {
 | |
|             subbnd++;
 | |
|             for(j=0; j<12; j++) {
 | |
|                 for(ch=1; ch<=s->fbw_channels; ch++) {
 | |
|                     if(s->channel_in_cpl[ch]) {
 | |
|                         s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
 | |
|                         if (ch == 2 && s->phase_flags[bnd])
 | |
|                             s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
 | |
|                     }
 | |
|                 }
 | |
|                 i++;
 | |
|             }
 | |
|         } while(s->cpl_band_struct[subbnd]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Grouped mantissas for 3-level 5-level and 11-level quantization
 | |
|  */
 | |
| typedef struct {
 | |
|     int b1_mant[3];
 | |
|     int b2_mant[3];
 | |
|     int b4_mant[2];
 | |
|     int b1ptr;
 | |
|     int b2ptr;
 | |
|     int b4ptr;
 | |
| } mant_groups;
 | |
| 
 | |
| /**
 | |
|  * Decode the transform coefficients for a particular channel
 | |
|  * reference: Section 7.3 Quantization and Decoding of Mantissas
 | |
|  */
 | |
| static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
 | |
| {
 | |
|     GetBitContext *gbc = &s->gbc;
 | |
|     int i, gcode, tbap, start, end;
 | |
|     uint8_t *exps;
 | |
|     uint8_t *bap;
 | |
|     int *coeffs;
 | |
| 
 | |
|     exps = s->dexps[ch_index];
 | |
|     bap = s->bap[ch_index];
 | |
|     coeffs = s->fixed_coeffs[ch_index];
 | |
|     start = s->start_freq[ch_index];
 | |
|     end = s->end_freq[ch_index];
 | |
| 
 | |
|     for (i = start; i < end; i++) {
 | |
|         tbap = bap[i];
 | |
|         switch (tbap) {
 | |
|             case 0:
 | |
|                 coeffs[i] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
 | |
|                 break;
 | |
| 
 | |
|             case 1:
 | |
|                 if(m->b1ptr > 2) {
 | |
|                     gcode = get_bits(gbc, 5);
 | |
|                     m->b1_mant[0] = b1_mantissas[gcode][0];
 | |
|                     m->b1_mant[1] = b1_mantissas[gcode][1];
 | |
|                     m->b1_mant[2] = b1_mantissas[gcode][2];
 | |
|                     m->b1ptr = 0;
 | |
|                 }
 | |
|                 coeffs[i] = m->b1_mant[m->b1ptr++];
 | |
|                 break;
 | |
| 
 | |
|             case 2:
 | |
|                 if(m->b2ptr > 2) {
 | |
|                     gcode = get_bits(gbc, 7);
 | |
|                     m->b2_mant[0] = b2_mantissas[gcode][0];
 | |
|                     m->b2_mant[1] = b2_mantissas[gcode][1];
 | |
|                     m->b2_mant[2] = b2_mantissas[gcode][2];
 | |
|                     m->b2ptr = 0;
 | |
|                 }
 | |
|                 coeffs[i] = m->b2_mant[m->b2ptr++];
 | |
|                 break;
 | |
| 
 | |
|             case 3:
 | |
|                 coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
 | |
|                 break;
 | |
| 
 | |
|             case 4:
 | |
|                 if(m->b4ptr > 1) {
 | |
|                     gcode = get_bits(gbc, 7);
 | |
|                     m->b4_mant[0] = b4_mantissas[gcode][0];
 | |
|                     m->b4_mant[1] = b4_mantissas[gcode][1];
 | |
|                     m->b4ptr = 0;
 | |
|                 }
 | |
|                 coeffs[i] = m->b4_mant[m->b4ptr++];
 | |
|                 break;
 | |
| 
 | |
|             case 5:
 | |
|                 coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
 | |
|                 break;
 | |
| 
 | |
|             default: {
 | |
|                 /* asymmetric dequantization */
 | |
|                 int qlevel = quantization_tab[tbap];
 | |
|                 coeffs[i] = get_sbits(gbc, qlevel) << (24 - qlevel);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         coeffs[i] >>= exps[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Remove random dithering from coefficients with zero-bit mantissas
 | |
|  * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
 | |
|  */
 | |
| static void remove_dithering(AC3DecodeContext *s) {
 | |
|     int ch, i;
 | |
|     int end=0;
 | |
|     int *coeffs;
 | |
|     uint8_t *bap;
 | |
| 
 | |
|     for(ch=1; ch<=s->fbw_channels; ch++) {
 | |
|         if(!s->dither_flag[ch]) {
 | |
|             coeffs = s->fixed_coeffs[ch];
 | |
|             bap = s->bap[ch];
 | |
|             if(s->channel_in_cpl[ch])
 | |
|                 end = s->start_freq[CPL_CH];
 | |
|             else
 | |
|                 end = s->end_freq[ch];
 | |
|             for(i=0; i<end; i++) {
 | |
|                 if(!bap[i])
 | |
|                     coeffs[i] = 0;
 | |
|             }
 | |
|             if(s->channel_in_cpl[ch]) {
 | |
|                 bap = s->bap[CPL_CH];
 | |
|                 for(; i<s->end_freq[CPL_CH]; i++) {
 | |
|                     if(!bap[i])
 | |
|                         coeffs[i] = 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
 | |
|                                     mant_groups *m)
 | |
| {
 | |
|     if (!s->channel_uses_aht[ch]) {
 | |
|         ac3_decode_transform_coeffs_ch(s, ch, m);
 | |
|     } else {
 | |
|         /* if AHT is used, mantissas for all blocks are encoded in the first
 | |
|            block of the frame. */
 | |
|         int bin;
 | |
|         if (!blk)
 | |
|             ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
 | |
|         for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
 | |
|             s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode the transform coefficients.
 | |
|  */
 | |
| static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
 | |
| {
 | |
|     int ch, end;
 | |
|     int got_cplchan = 0;
 | |
|     mant_groups m;
 | |
| 
 | |
|     m.b1ptr = m.b2ptr = m.b4ptr = 3;
 | |
| 
 | |
|     for (ch = 1; ch <= s->channels; ch++) {
 | |
|         /* transform coefficients for full-bandwidth channel */
 | |
|         decode_transform_coeffs_ch(s, blk, ch, &m);
 | |
|         /* tranform coefficients for coupling channel come right after the
 | |
|            coefficients for the first coupled channel*/
 | |
|         if (s->channel_in_cpl[ch])  {
 | |
|             if (!got_cplchan) {
 | |
|                 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
 | |
|                 calc_transform_coeffs_cpl(s);
 | |
|                 got_cplchan = 1;
 | |
|             }
 | |
|             end = s->end_freq[CPL_CH];
 | |
|         } else {
 | |
|             end = s->end_freq[ch];
 | |
|         }
 | |
|         do
 | |
|             s->fixed_coeffs[ch][end] = 0;
 | |
|         while(++end < 256);
 | |
|     }
 | |
| 
 | |
|     /* zero the dithered coefficients for appropriate channels */
 | |
|     remove_dithering(s);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Stereo rematrixing.
 | |
|  * reference: Section 7.5.4 Rematrixing : Decoding Technique
 | |
|  */
 | |
| static void do_rematrixing(AC3DecodeContext *s)
 | |
| {
 | |
|     int bnd, i;
 | |
|     int end, bndend;
 | |
|     int tmp0, tmp1;
 | |
| 
 | |
|     end = FFMIN(s->end_freq[1], s->end_freq[2]);
 | |
| 
 | |
|     for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
 | |
|         if(s->rematrixing_flags[bnd]) {
 | |
|             bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
 | |
|             for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
 | |
|                 tmp0 = s->fixed_coeffs[1][i];
 | |
|                 tmp1 = s->fixed_coeffs[2][i];
 | |
|                 s->fixed_coeffs[1][i] = tmp0 + tmp1;
 | |
|                 s->fixed_coeffs[2][i] = tmp0 - tmp1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Inverse MDCT Transform.
 | |
|  * Convert frequency domain coefficients to time-domain audio samples.
 | |
|  * reference: Section 7.9.4 Transformation Equations
 | |
|  */
 | |
| static inline void do_imdct(AC3DecodeContext *s, int channels)
 | |
| {
 | |
|     int ch;
 | |
|     float add_bias = s->add_bias;
 | |
|     if(s->out_channels==1 && channels>1)
 | |
|         add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
 | |
| 
 | |
|     for (ch=1; ch<=channels; ch++) {
 | |
|         if (s->block_switch[ch]) {
 | |
|             int i;
 | |
|             float *x = s->tmp_output+128;
 | |
|             for(i=0; i<128; i++)
 | |
|                 x[i] = s->transform_coeffs[ch][2*i];
 | |
|             ff_imdct_half(&s->imdct_256, s->tmp_output, x);
 | |
|             s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
 | |
|             for(i=0; i<128; i++)
 | |
|                 x[i] = s->transform_coeffs[ch][2*i+1];
 | |
|             ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
 | |
|         } else {
 | |
|             ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
 | |
|             s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
 | |
|             memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Downmix the output to mono or stereo.
 | |
|  */
 | |
| void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
 | |
| {
 | |
|     int i, j;
 | |
|     float v0, v1;
 | |
|     if(out_ch == 2) {
 | |
|         for(i=0; i<len; i++) {
 | |
|             v0 = v1 = 0.0f;
 | |
|             for(j=0; j<in_ch; j++) {
 | |
|                 v0 += samples[j][i] * matrix[j][0];
 | |
|                 v1 += samples[j][i] * matrix[j][1];
 | |
|             }
 | |
|             samples[0][i] = v0;
 | |
|             samples[1][i] = v1;
 | |
|         }
 | |
|     } else if(out_ch == 1) {
 | |
|         for(i=0; i<len; i++) {
 | |
|             v0 = 0.0f;
 | |
|             for(j=0; j<in_ch; j++)
 | |
|                 v0 += samples[j][i] * matrix[j][0];
 | |
|             samples[0][i] = v0;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Upmix delay samples from stereo to original channel layout.
 | |
|  */
 | |
| static void ac3_upmix_delay(AC3DecodeContext *s)
 | |
| {
 | |
|     int channel_data_size = sizeof(s->delay[0]);
 | |
|     switch(s->channel_mode) {
 | |
|         case AC3_CHMODE_DUALMONO:
 | |
|         case AC3_CHMODE_STEREO:
 | |
|             /* upmix mono to stereo */
 | |
|             memcpy(s->delay[1], s->delay[0], channel_data_size);
 | |
|             break;
 | |
|         case AC3_CHMODE_2F2R:
 | |
|             memset(s->delay[3], 0, channel_data_size);
 | |
|         case AC3_CHMODE_2F1R:
 | |
|             memset(s->delay[2], 0, channel_data_size);
 | |
|             break;
 | |
|         case AC3_CHMODE_3F2R:
 | |
|             memset(s->delay[4], 0, channel_data_size);
 | |
|         case AC3_CHMODE_3F1R:
 | |
|             memset(s->delay[3], 0, channel_data_size);
 | |
|         case AC3_CHMODE_3F:
 | |
|             memcpy(s->delay[2], s->delay[1], channel_data_size);
 | |
|             memset(s->delay[1], 0, channel_data_size);
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode band structure for coupling, spectral extension, or enhanced coupling.
 | |
|  * @param[in] gbc bit reader context
 | |
|  * @param[in] blk block number
 | |
|  * @param[in] eac3 flag to indicate E-AC-3
 | |
|  * @param[in] ecpl flag to indicate enhanced coupling
 | |
|  * @param[in] start_subband subband number for start of range
 | |
|  * @param[in] end_subband subband number for end of range
 | |
|  * @param[in] default_band_struct default band structure table
 | |
|  * @param[out] band_struct decoded band structure
 | |
|  * @param[out] num_subbands number of subbands (optionally NULL)
 | |
|  * @param[out] num_bands number of bands (optionally NULL)
 | |
|  * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
 | |
|  */
 | |
| static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
 | |
|                                   int ecpl, int start_subband, int end_subband,
 | |
|                                   const uint8_t *default_band_struct,
 | |
|                                   uint8_t *band_struct, int *num_subbands,
 | |
|                                   int *num_bands, uint8_t *band_sizes)
 | |
| {
 | |
|     int subbnd, bnd, n_subbands, n_bands=0;
 | |
|     uint8_t bnd_sz[22];
 | |
| 
 | |
|     n_subbands = end_subband - start_subband;
 | |
| 
 | |
|     /* decode band structure from bitstream or use default */
 | |
|     if (!eac3 || get_bits1(gbc)) {
 | |
|         for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
 | |
|             band_struct[subbnd] = get_bits1(gbc);
 | |
|         }
 | |
|     } else if (!blk) {
 | |
|         memcpy(band_struct,
 | |
|                &default_band_struct[start_subband+1],
 | |
|                n_subbands-1);
 | |
|     }
 | |
|     band_struct[n_subbands-1] = 0;
 | |
| 
 | |
|     /* calculate number of bands and band sizes based on band structure.
 | |
|        note that the first 4 subbands in enhanced coupling span only 6 bins
 | |
|        instead of 12. */
 | |
|     if (num_bands || band_sizes ) {
 | |
|         n_bands = n_subbands;
 | |
|         bnd_sz[0] = ecpl ? 6 : 12;
 | |
|         for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
 | |
|             int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
 | |
|             if (band_struct[subbnd-1]) {
 | |
|                 n_bands--;
 | |
|                 bnd_sz[bnd] += subbnd_size;
 | |
|             } else {
 | |
|                 bnd_sz[++bnd] = subbnd_size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* set optional output params */
 | |
|     if (num_subbands)
 | |
|         *num_subbands = n_subbands;
 | |
|     if (num_bands)
 | |
|         *num_bands = n_bands;
 | |
|     if (band_sizes)
 | |
|         memcpy(band_sizes, bnd_sz, n_bands);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a single audio block from the AC-3 bitstream.
 | |
|  */
 | |
| static int decode_audio_block(AC3DecodeContext *s, int blk)
 | |
| {
 | |
|     int fbw_channels = s->fbw_channels;
 | |
|     int channel_mode = s->channel_mode;
 | |
|     int i, bnd, seg, ch;
 | |
|     int different_transforms;
 | |
|     int downmix_output;
 | |
|     int cpl_in_use;
 | |
|     GetBitContext *gbc = &s->gbc;
 | |
|     uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
 | |
| 
 | |
|     memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
 | |
| 
 | |
|     /* block switch flags */
 | |
|     different_transforms = 0;
 | |
|     if (s->block_switch_syntax) {
 | |
|         for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|             s->block_switch[ch] = get_bits1(gbc);
 | |
|             if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
 | |
|                 different_transforms = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* dithering flags */
 | |
|     if (s->dither_flag_syntax) {
 | |
|         for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|             s->dither_flag[ch] = get_bits1(gbc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* dynamic range */
 | |
|     i = !(s->channel_mode);
 | |
|     do {
 | |
|         if(get_bits1(gbc)) {
 | |
|             s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
 | |
|                                   s->avctx->drc_scale)+1.0;
 | |
|         } else if(blk == 0) {
 | |
|             s->dynamic_range[i] = 1.0f;
 | |
|         }
 | |
|     } while(i--);
 | |
| 
 | |
|     /* spectral extension strategy */
 | |
|     if (s->eac3 && (!blk || get_bits1(gbc))) {
 | |
|         if (get_bits1(gbc)) {
 | |
|             ff_log_missing_feature(s->avctx, "Spectral extension", 1);
 | |
|             return -1;
 | |
|         }
 | |
|         /* TODO: parse spectral extension strategy info */
 | |
|     }
 | |
| 
 | |
|     /* TODO: spectral extension coordinates */
 | |
| 
 | |
|     /* coupling strategy */
 | |
|     if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
 | |
|         memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
 | |
|         if (!s->eac3)
 | |
|             s->cpl_in_use[blk] = get_bits1(gbc);
 | |
|         if (s->cpl_in_use[blk]) {
 | |
|             /* coupling in use */
 | |
|             int cpl_start_subband, cpl_end_subband;
 | |
| 
 | |
|             if (channel_mode < AC3_CHMODE_STEREO) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
 | |
|                 return -1;
 | |
|             }
 | |
| 
 | |
|             /* check for enhanced coupling */
 | |
|             if (s->eac3 && get_bits1(gbc)) {
 | |
|                 /* TODO: parse enhanced coupling strategy info */
 | |
|                 ff_log_missing_feature(s->avctx, "Enhanced coupling", 1);
 | |
|                 return -1;
 | |
|             }
 | |
| 
 | |
|             /* determine which channels are coupled */
 | |
|             if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
 | |
|                 s->channel_in_cpl[1] = 1;
 | |
|                 s->channel_in_cpl[2] = 1;
 | |
|             } else {
 | |
|                 for (ch = 1; ch <= fbw_channels; ch++)
 | |
|                     s->channel_in_cpl[ch] = get_bits1(gbc);
 | |
|             }
 | |
| 
 | |
|             /* phase flags in use */
 | |
|             if (channel_mode == AC3_CHMODE_STEREO)
 | |
|                 s->phase_flags_in_use = get_bits1(gbc);
 | |
| 
 | |
|             /* coupling frequency range */
 | |
|             /* TODO: modify coupling end freq if spectral extension is used */
 | |
|             cpl_start_subband = get_bits(gbc, 4);
 | |
|             cpl_end_subband   = get_bits(gbc, 4) + 3;
 | |
|             s->num_cpl_subbands = cpl_end_subband - cpl_start_subband;
 | |
|             if (s->num_cpl_subbands < 0) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d > %d)\n",
 | |
|                        cpl_start_subband, cpl_end_subband);
 | |
|                 return -1;
 | |
|             }
 | |
|             s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
 | |
|             s->end_freq[CPL_CH]   = cpl_end_subband   * 12 + 37;
 | |
| 
 | |
|            decode_band_structure(gbc, blk, s->eac3, 0,
 | |
|                                  cpl_start_subband, cpl_end_subband,
 | |
|                                  ff_eac3_default_cpl_band_struct,
 | |
|                                  s->cpl_band_struct, &s->num_cpl_subbands,
 | |
|                                  &s->num_cpl_bands, NULL);
 | |
|         } else {
 | |
|             /* coupling not in use */
 | |
|             for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|                 s->channel_in_cpl[ch] = 0;
 | |
|                 s->first_cpl_coords[ch] = 1;
 | |
|             }
 | |
|             s->first_cpl_leak = s->eac3;
 | |
|             s->phase_flags_in_use = 0;
 | |
|         }
 | |
|     } else if (!s->eac3) {
 | |
|         if(!blk) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
 | |
|             return -1;
 | |
|         } else {
 | |
|             s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
 | |
|         }
 | |
|     }
 | |
|     cpl_in_use = s->cpl_in_use[blk];
 | |
| 
 | |
|     /* coupling coordinates */
 | |
|     if (cpl_in_use) {
 | |
|         int cpl_coords_exist = 0;
 | |
| 
 | |
|         for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|             if (s->channel_in_cpl[ch]) {
 | |
|                 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
 | |
|                     int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
 | |
|                     s->first_cpl_coords[ch] = 0;
 | |
|                     cpl_coords_exist = 1;
 | |
|                     master_cpl_coord = 3 * get_bits(gbc, 2);
 | |
|                     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | |
|                         cpl_coord_exp = get_bits(gbc, 4);
 | |
|                         cpl_coord_mant = get_bits(gbc, 4);
 | |
|                         if (cpl_coord_exp == 15)
 | |
|                             s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
 | |
|                         else
 | |
|                             s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
 | |
|                         s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
 | |
|                     }
 | |
|                 } else if (!blk) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
 | |
|                     return -1;
 | |
|                 }
 | |
|             } else {
 | |
|                 /* channel not in coupling */
 | |
|                 s->first_cpl_coords[ch] = 1;
 | |
|             }
 | |
|         }
 | |
|         /* phase flags */
 | |
|         if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
 | |
|             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | |
|                 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* stereo rematrixing strategy and band structure */
 | |
|     if (channel_mode == AC3_CHMODE_STEREO) {
 | |
|         if ((s->eac3 && !blk) || get_bits1(gbc)) {
 | |
|             s->num_rematrixing_bands = 4;
 | |
|             if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
 | |
|                 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
 | |
|             for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
 | |
|                 s->rematrixing_flags[bnd] = get_bits1(gbc);
 | |
|         } else if (!blk) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* exponent strategies for each channel */
 | |
|     for (ch = !cpl_in_use; ch <= s->channels; ch++) {
 | |
|         if (!s->eac3)
 | |
|             s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
 | |
|         if(s->exp_strategy[blk][ch] != EXP_REUSE)
 | |
|             bit_alloc_stages[ch] = 3;
 | |
|     }
 | |
| 
 | |
|     /* channel bandwidth */
 | |
|     for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|         s->start_freq[ch] = 0;
 | |
|         if (s->exp_strategy[blk][ch] != EXP_REUSE) {
 | |
|             int group_size;
 | |
|             int prev = s->end_freq[ch];
 | |
|             if (s->channel_in_cpl[ch])
 | |
|                 s->end_freq[ch] = s->start_freq[CPL_CH];
 | |
|             else {
 | |
|                 int bandwidth_code = get_bits(gbc, 6);
 | |
|                 if (bandwidth_code > 60) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
 | |
|                     return -1;
 | |
|                 }
 | |
|                 s->end_freq[ch] = bandwidth_code * 3 + 73;
 | |
|             }
 | |
|             group_size = 3 << (s->exp_strategy[blk][ch] - 1);
 | |
|             s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
 | |
|             if(blk > 0 && s->end_freq[ch] != prev)
 | |
|                 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
 | |
|         }
 | |
|     }
 | |
|     if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
 | |
|         s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
 | |
|                                     (3 << (s->exp_strategy[blk][CPL_CH] - 1));
 | |
|     }
 | |
| 
 | |
|     /* decode exponents for each channel */
 | |
|     for (ch = !cpl_in_use; ch <= s->channels; ch++) {
 | |
|         if (s->exp_strategy[blk][ch] != EXP_REUSE) {
 | |
|             s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
 | |
|             if (decode_exponents(gbc, s->exp_strategy[blk][ch],
 | |
|                                  s->num_exp_groups[ch], s->dexps[ch][0],
 | |
|                                  &s->dexps[ch][s->start_freq[ch]+!!ch])) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
 | |
|                 return -1;
 | |
|             }
 | |
|             if(ch != CPL_CH && ch != s->lfe_ch)
 | |
|                 skip_bits(gbc, 2); /* skip gainrng */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* bit allocation information */
 | |
|     if (s->bit_allocation_syntax) {
 | |
|         if (get_bits1(gbc)) {
 | |
|             s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
 | |
|             s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
 | |
|             s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
 | |
|             s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
 | |
|             s->bit_alloc_params.floor  = ff_ac3_floor_tab[get_bits(gbc, 3)];
 | |
|             for(ch=!cpl_in_use; ch<=s->channels; ch++)
 | |
|                 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|         } else if (!blk) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
 | |
|     if(!s->eac3 || !blk){
 | |
|         if(s->snr_offset_strategy && get_bits1(gbc)) {
 | |
|             int snr = 0;
 | |
|             int csnr;
 | |
|             csnr = (get_bits(gbc, 6) - 15) << 4;
 | |
|             for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
 | |
|                 /* snr offset */
 | |
|                 if (ch == i || s->snr_offset_strategy == 2)
 | |
|                     snr = (csnr + get_bits(gbc, 4)) << 2;
 | |
|                 /* run at least last bit allocation stage if snr offset changes */
 | |
|                 if(blk && s->snr_offset[ch] != snr) {
 | |
|                     bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
 | |
|                 }
 | |
|                 s->snr_offset[ch] = snr;
 | |
| 
 | |
|                 /* fast gain (normal AC-3 only) */
 | |
|                 if (!s->eac3) {
 | |
|                     int prev = s->fast_gain[ch];
 | |
|                     s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
 | |
|                     /* run last 2 bit allocation stages if fast gain changes */
 | |
|                     if(blk && prev != s->fast_gain[ch])
 | |
|                         bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|                 }
 | |
|             }
 | |
|         } else if (!s->eac3 && !blk) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* fast gain (E-AC-3 only) */
 | |
|     if (s->fast_gain_syntax && get_bits1(gbc)) {
 | |
|         for (ch = !cpl_in_use; ch <= s->channels; ch++) {
 | |
|             int prev = s->fast_gain[ch];
 | |
|             s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
 | |
|             /* run last 2 bit allocation stages if fast gain changes */
 | |
|             if(blk && prev != s->fast_gain[ch])
 | |
|                 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|         }
 | |
|     } else if (s->eac3 && !blk) {
 | |
|         for (ch = !cpl_in_use; ch <= s->channels; ch++)
 | |
|             s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
 | |
|     }
 | |
| 
 | |
|     /* E-AC-3 to AC-3 converter SNR offset */
 | |
|     if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
 | |
|         skip_bits(gbc, 10); // skip converter snr offset
 | |
|     }
 | |
| 
 | |
|     /* coupling leak information */
 | |
|     if (cpl_in_use) {
 | |
|         if (s->first_cpl_leak || get_bits1(gbc)) {
 | |
|             int fl = get_bits(gbc, 3);
 | |
|             int sl = get_bits(gbc, 3);
 | |
|             /* run last 2 bit allocation stages for coupling channel if
 | |
|                coupling leak changes */
 | |
|             if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
 | |
|                        sl != s->bit_alloc_params.cpl_slow_leak)) {
 | |
|                 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
 | |
|             }
 | |
|             s->bit_alloc_params.cpl_fast_leak = fl;
 | |
|             s->bit_alloc_params.cpl_slow_leak = sl;
 | |
|         } else if (!s->eac3 && !blk) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
 | |
|             return -1;
 | |
|         }
 | |
|         s->first_cpl_leak = 0;
 | |
|     }
 | |
| 
 | |
|     /* delta bit allocation information */
 | |
|     if (s->dba_syntax && get_bits1(gbc)) {
 | |
|         /* delta bit allocation exists (strategy) */
 | |
|         for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
 | |
|             s->dba_mode[ch] = get_bits(gbc, 2);
 | |
|             if (s->dba_mode[ch] == DBA_RESERVED) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
 | |
|                 return -1;
 | |
|             }
 | |
|             bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|         }
 | |
|         /* channel delta offset, len and bit allocation */
 | |
|         for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
 | |
|             if (s->dba_mode[ch] == DBA_NEW) {
 | |
|                 s->dba_nsegs[ch] = get_bits(gbc, 3);
 | |
|                 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
 | |
|                     s->dba_offsets[ch][seg] = get_bits(gbc, 5);
 | |
|                     s->dba_lengths[ch][seg] = get_bits(gbc, 4);
 | |
|                     s->dba_values[ch][seg] = get_bits(gbc, 3);
 | |
|                 }
 | |
|                 /* run last 2 bit allocation stages if new dba values */
 | |
|                 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|             }
 | |
|         }
 | |
|     } else if(blk == 0) {
 | |
|         for(ch=0; ch<=s->channels; ch++) {
 | |
|             s->dba_mode[ch] = DBA_NONE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Bit allocation */
 | |
|     for(ch=!cpl_in_use; ch<=s->channels; ch++) {
 | |
|         if(bit_alloc_stages[ch] > 2) {
 | |
|             /* Exponent mapping into PSD and PSD integration */
 | |
|             ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
 | |
|                                       s->start_freq[ch], s->end_freq[ch],
 | |
|                                       s->psd[ch], s->band_psd[ch]);
 | |
|         }
 | |
|         if(bit_alloc_stages[ch] > 1) {
 | |
|             /* Compute excitation function, Compute masking curve, and
 | |
|                Apply delta bit allocation */
 | |
|             if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
 | |
|                                            s->start_freq[ch], s->end_freq[ch],
 | |
|                                            s->fast_gain[ch], (ch == s->lfe_ch),
 | |
|                                            s->dba_mode[ch], s->dba_nsegs[ch],
 | |
|                                            s->dba_offsets[ch], s->dba_lengths[ch],
 | |
|                                            s->dba_values[ch], s->mask[ch])) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|         if(bit_alloc_stages[ch] > 0) {
 | |
|             /* Compute bit allocation */
 | |
|             const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
 | |
|                                      ff_eac3_hebap_tab : ff_ac3_bap_tab;
 | |
|             ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
 | |
|                                       s->start_freq[ch], s->end_freq[ch],
 | |
|                                       s->snr_offset[ch],
 | |
|                                       s->bit_alloc_params.floor,
 | |
|                                       bap_tab, s->bap[ch]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* unused dummy data */
 | |
|     if (s->skip_syntax && get_bits1(gbc)) {
 | |
|         int skipl = get_bits(gbc, 9);
 | |
|         while(skipl--)
 | |
|             skip_bits(gbc, 8);
 | |
|     }
 | |
| 
 | |
|     /* unpack the transform coefficients
 | |
|        this also uncouples channels if coupling is in use. */
 | |
|     decode_transform_coeffs(s, blk);
 | |
| 
 | |
|     /* TODO: generate enhanced coupling coordinates and uncouple */
 | |
| 
 | |
|     /* TODO: apply spectral extension */
 | |
| 
 | |
|     /* recover coefficients if rematrixing is in use */
 | |
|     if(s->channel_mode == AC3_CHMODE_STEREO)
 | |
|         do_rematrixing(s);
 | |
| 
 | |
|     /* apply scaling to coefficients (headroom, dynrng) */
 | |
|     for(ch=1; ch<=s->channels; ch++) {
 | |
|         float gain = s->mul_bias / 4194304.0f;
 | |
|         if(s->channel_mode == AC3_CHMODE_DUALMONO) {
 | |
|             gain *= s->dynamic_range[ch-1];
 | |
|         } else {
 | |
|             gain *= s->dynamic_range[0];
 | |
|         }
 | |
|         s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
 | |
|     }
 | |
| 
 | |
|     /* downmix and MDCT. order depends on whether block switching is used for
 | |
|        any channel in this block. this is because coefficients for the long
 | |
|        and short transforms cannot be mixed. */
 | |
|     downmix_output = s->channels != s->out_channels &&
 | |
|                      !((s->output_mode & AC3_OUTPUT_LFEON) &&
 | |
|                      s->fbw_channels == s->out_channels);
 | |
|     if(different_transforms) {
 | |
|         /* the delay samples have already been downmixed, so we upmix the delay
 | |
|            samples in order to reconstruct all channels before downmixing. */
 | |
|         if(s->downmixed) {
 | |
|             s->downmixed = 0;
 | |
|             ac3_upmix_delay(s);
 | |
|         }
 | |
| 
 | |
|         do_imdct(s, s->channels);
 | |
| 
 | |
|         if(downmix_output) {
 | |
|             s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
 | |
|         }
 | |
|     } else {
 | |
|         if(downmix_output) {
 | |
|             s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
 | |
|         }
 | |
| 
 | |
|         if(downmix_output && !s->downmixed) {
 | |
|             s->downmixed = 1;
 | |
|             s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
 | |
|         }
 | |
| 
 | |
|         do_imdct(s, s->out_channels);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a single AC-3 frame.
 | |
|  */
 | |
| static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
 | |
|                             const uint8_t *buf, int buf_size)
 | |
| {
 | |
|     AC3DecodeContext *s = avctx->priv_data;
 | |
|     int16_t *out_samples = (int16_t *)data;
 | |
|     int blk, ch, err;
 | |
| 
 | |
|     /* initialize the GetBitContext with the start of valid AC-3 Frame */
 | |
|     if (s->input_buffer) {
 | |
|         /* copy input buffer to decoder context to avoid reading past the end
 | |
|            of the buffer, which can be caused by a damaged input stream. */
 | |
|         memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
 | |
|         init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
 | |
|     } else {
 | |
|         init_get_bits(&s->gbc, buf, buf_size * 8);
 | |
|     }
 | |
| 
 | |
|     /* parse the syncinfo */
 | |
|     *data_size = 0;
 | |
|     err = parse_frame_header(s);
 | |
| 
 | |
|     /* check that reported frame size fits in input buffer */
 | |
|     if(s->frame_size > buf_size) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
 | |
|         err = AC3_PARSE_ERROR_FRAME_SIZE;
 | |
|     }
 | |
| 
 | |
|     /* check for crc mismatch */
 | |
|     if(err != AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
 | |
|         if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
 | |
|             err = AC3_PARSE_ERROR_CRC;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(err && err != AC3_PARSE_ERROR_CRC) {
 | |
|         switch(err) {
 | |
|             case AC3_PARSE_ERROR_SYNC:
 | |
|                 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
 | |
|                 return -1;
 | |
|             case AC3_PARSE_ERROR_BSID:
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
 | |
|                 break;
 | |
|             case AC3_PARSE_ERROR_SAMPLE_RATE:
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
 | |
|                 break;
 | |
|             case AC3_PARSE_ERROR_FRAME_SIZE:
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
 | |
|                 break;
 | |
|             case AC3_PARSE_ERROR_FRAME_TYPE:
 | |
|                 /* skip frame if CRC is ok. otherwise use error concealment. */
 | |
|                 /* TODO: add support for substreams and dependent frames */
 | |
|                 if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
 | |
|                     return s->frame_size;
 | |
|                 } else {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
 | |
|                 }
 | |
|                 break;
 | |
|             default:
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* if frame is ok, set audio parameters */
 | |
|     if (!err) {
 | |
|         avctx->sample_rate = s->sample_rate;
 | |
|         avctx->bit_rate = s->bit_rate;
 | |
| 
 | |
|         /* channel config */
 | |
|         s->out_channels = s->channels;
 | |
|         s->output_mode = s->channel_mode;
 | |
|         if(s->lfe_on)
 | |
|             s->output_mode |= AC3_OUTPUT_LFEON;
 | |
|         if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
 | |
|                 avctx->request_channels < s->channels) {
 | |
|             s->out_channels = avctx->request_channels;
 | |
|             s->output_mode  = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
 | |
|         }
 | |
|         avctx->channels = s->out_channels;
 | |
| 
 | |
|         /* set downmixing coefficients if needed */
 | |
|         if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
 | |
|                 s->fbw_channels == s->out_channels)) {
 | |
|             set_downmix_coeffs(s);
 | |
|         }
 | |
|     } else if (!s->out_channels) {
 | |
|         s->out_channels = avctx->channels;
 | |
|         if(s->out_channels < s->channels)
 | |
|             s->output_mode  = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
 | |
|     }
 | |
| 
 | |
|     /* decode the audio blocks */
 | |
|     for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|         const float *output[s->out_channels];
 | |
|         if (!err && decode_audio_block(s, blk)) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
 | |
|             err = 1;
 | |
|         }
 | |
|         for (ch = 0; ch < s->out_channels; ch++)
 | |
|             output[ch] = s->output[ch];
 | |
|         s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
 | |
|         out_samples += 256 * s->out_channels;
 | |
|     }
 | |
|     *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
 | |
|     return s->frame_size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Uninitialize the AC-3 decoder.
 | |
|  */
 | |
| static av_cold int ac3_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     AC3DecodeContext *s = avctx->priv_data;
 | |
|     ff_mdct_end(&s->imdct_512);
 | |
|     ff_mdct_end(&s->imdct_256);
 | |
| 
 | |
|     av_freep(&s->input_buffer);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec ac3_decoder = {
 | |
|     .name = "ac3",
 | |
|     .type = CODEC_TYPE_AUDIO,
 | |
|     .id = CODEC_ID_AC3,
 | |
|     .priv_data_size = sizeof (AC3DecodeContext),
 | |
|     .init = ac3_decode_init,
 | |
|     .close = ac3_decode_end,
 | |
|     .decode = ac3_decode_frame,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
 | |
| };
 | |
| 
 | |
| AVCodec eac3_decoder = {
 | |
|     .name = "eac3",
 | |
|     .type = CODEC_TYPE_AUDIO,
 | |
|     .id = CODEC_ID_EAC3,
 | |
|     .priv_data_size = sizeof (AC3DecodeContext),
 | |
|     .init = ac3_decode_init,
 | |
|     .close = ac3_decode_end,
 | |
|     .decode = ac3_decode_frame,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
 | |
| };
 |